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Weights ?

Why Determine Weights ?

Data Set acquired & Model Structure selected.

Need to refine the Model, tune it.

Use Data Set

Z N = {[u(t), y(t)],T = 1, ...,N}

to pick the best Model among the subset of models

y(t) = ŷ(t |θ) + e(t) = g[t , θ] + e(t)

→Training

Training : Determine a mapping Z N → θ̂
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Weights ?

Criterion

Usually a mean square error type :

VN

(

θ,Z N
)

=
1

2N

N
∑

t=1

[y(t) − ŷ(t |θ)]2 =
1

2N

N
∑

t=1

ǫ2(t , θ)

→ Prediction Error Method :
Maximum likelihood estimation, estimating the noise signal
e(t) to be Gaussian.
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Overview
Search for a Minimum
Recursive Algorithms

Methods Overview

Objective : Determine the weights in the system as the
minimizer of the criterion :

θ̂ = argmin
θ

VN(θ,Z N)

Methods for search of a minimum :

Gradient Method.

Newton Method.

Gauss Newton Method.
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The Search for a Minimum : Notations and Ideas

Taylor series expansion of the criterion in θ∗ (2nd order) gives :

VN(θ,Z N) = VN(θ∗,Z N)+(θ−θ∗)T G(θ∗)+
1
2

(θ−θ∗)T H(θ∗)(θ−θ∗)

where the gradient G(θ∗) is defined by

G(θ∗) =
dVN(θ,Z N)

dθ

∣

∣

∣

∣

θ=θ∗

and the second-order derivative matrix, the Hessian, by

H(θ∗) =
d2VN(θ,Z N)

dθ2

∣

∣

∣

∣

θ=θ∗
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The Search for a Minimum : Notations and Ideas

Thus, suficient conditions for θ∗ being a min of VN(θ,Z N) are

Gradient equals zero, G(θ∗) = 0

Hessian matrix is positive definite, νT H(θ∗)ν > 0 for all
non-zero vectors ν

Iterative Search Methods are used to find a minimum, usually
following the pattern

θ(i+1) = θ(i) + µ(i)f (i)

with

f (i) the search direction

µ(i) the step size
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The Search for a Minimum : Gradient Method

Principle : Modify the weights along the opposite direction
of the gradient

θ(i+1) = θ(i) − µ(i)G(θ(i))
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The Search for a Minimum : Gradient Method (2)

Convergence : Depends on the step size µ(i)

Line Search : Rapid convergence but many network
evaluations per iteration
Adaptively Controlled
Constant

Local convergence is linear.
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The Search for a Minimum : Gradient Method (3)

Pros/Cons :
Slow Convergence
Easy to implement
Modest data storage requirements
Possible to use parallelizing
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The Search for a Minimum : Newton Method

The new iterate is determined as the minimizer of a
second-order expansion of the criterion around the current
iterate

ṼN(θ,Z N) = VN(θ(i),Z N) +
[

θ − θ(i)
]T

G(θ(i))

+
1
2

[

θ − θ(i)
]T

H(θ(i))
[

θ − θ(i)
]

Some work lead us to the update rule

θ(i+1) = θ(i) − H−1(θ(i))G(θ(i))

Kei Takahashi, Yoan Miché Determination of the Weights



Introduction
PEM Method

Generalization and Regularization
Conclusion

Overview
Search for a Minimum
Recursive Algorithms

The Search for a Minimum : Newton Method (2)

Based on an approximation of the criterion :
Convergence :

Approximation valid only in the neighborhood of the current
iterate.

A too big step might bring next iterate far from the
expected point.

Can’t be sure the method will converge at all.

−→ Usually use a gradient method to adjust weights in the
beginning.
When close enough to the minimum, switch to Newton Method
to get rapid local convergence.
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The Search for a Minimum : Newton Method (3)

Pros/Cons :

Not to be used directly for non-linear least square
problems.

Poor convergence when far from a local minimum.

Lots of computations for a step→ Approximation of the
Hessian.

Quadratic convergence around a minimum.
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The Search for a Minimum : Gauss-Newton Method

Meant for non-linear least squares problems.
Based on a linear approximation of the criterion :

ǫ̃(t , θ) = ǫ
(

t , θ(i)
)

+
[

ǫ′
(

t , θ(i)
)]T (

θ − θ(i)
)

Gauss-Newton Hessian is different than from Newton
Method one :

R
(

θ(i)
)

=
d2L(i)(θ)

dθ2

∣

∣

∣

∣

∣

θ=θ(i)

=
1
N

N
∑

t=1

ψ
(

t , θ(i)
)

ψT
(

t , θ(i)
)

, ψ(t , θ) =
dŷ(t |θ)

dθ

Requires only first order derivative information→ easy to
compute.
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The Search for a Minimum : Gauss-Newton Method (2)

Again, update is derived as the minimizer of

θ(i+1) = θ(i) − R−1
(

θ(i)
)

G
(

θ(i)
)

And Gauss-Newton direction is not calculated with the
inversion but by solving

R
(

θ(i)
)

f (i) = −G
(

θ(i)
)
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The Search for a Minimum : Gauss-Newton Method (3)

Convergence :

Linear convergence.

For zero or small residual problems, convergence is
particularly fast.

Large noise leads to large residuals but are indepedent on
the data.
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The Search for a Minimum : Gauss-Newton Method (3)

Pros/Cons :

Theoretically slower local convergence than Newton
Method but in practice, faster, especially when far from the
minimum.

Always reasonable to deploy the method in any case.
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The Search for a Minimum : Levenberg-Marquardt Method

Search direction based on the approximation L(i)(θ) of the
criterion VN

(

θ,Z N
)

VN

(

θ,Z N
)

≃ L(i)(θ) =
1

2N

N
∑

t=1

ǫ̃2(t , θ)

Idea is to search for the minimum of L(i)(θ) in a ball of radius
δ(i) around the current iterate. The optimization problem is then

θ(i+1) = argmin
θ

L(i)(θ) subject to
∣

∣

∣
θ − θ(i)

∣

∣

∣
≤ δ(i)
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The Search for a Minimum : Levenberg-Marquardt Method (2)

Thus, the direction and step size are defined by

θ(i+1) = θ(i) + f (i)

[

R
(

θ(i)
)

+ λ(i)I
]

f (i) = −G
(

θ(i)
)

There is a monotonic relation between λ(i) and δ(i) but usually
hard to get.
Some considerations about λ :

λ −→∞, diagonal matrix will dominate R(θ) leading to
gradient method with a very small step size.

λ −→ 0, we come back to the Gauss-Newton Method.
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The Search for a Minimum : Levenberg-Marquardt Method (3)

λ

Gauss−Newton Direction

Gradient direction

Levenberg−Marquardt direction 
for various values of

λ = 0

λ = 

θ(i+1) = θ(i) + f (i)

[

R
(

θ(i)
)

+ λ(i)I
]

f (i) = −G
(

θ(i)
)
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The Search for a Minimum : Levenberg-Marquardt Method (4)

Hard to determine λ→ Use of an indirect method :
Observe how well the reduction in the criterion matches the
one predicted by L(i)(θ) and adjust λ according to this. Using

r (i) =
VN

(

θ(i),Z N
)

− VN
(

θ(i) + f (i),Z N
)

VN
(

θ(i),Z N
)

− L(i)
(

θ(i) + f (i)
)

If the ratio is close to one, L(i)
(

θ(i) + f (i)
)

is likely to be a good
approximation of VN and λ should be decreased. On the other
case, λ should be increased.
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The Search for a Minimum : Levenberg-Marquardt Method (5)

The Levenberg-Marquardt Algorithm :

1. Select initial parameter vector θ(0) and initial value λ(0)

2. Determine search direction from
[

R
(

θ(i)
)

+ λ(i)I
]

f (i) = −G
(

θ(i)
)

3. r (i) > 0.75⇒ λ(i) = λ(i)/2

4. r (i) < 0.25⇒ λ(i) = 2λ(i)

5. If VN
(

θ(i) + f (i),Z N
)

< VN
(

θ(i),Z N
)

then accept
θ(i+1) = θ(i) + f (i) as a new iterate and let λ(i+1) = λ(i)

6. If the stopping criterion is not satisfied, go to 2.
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The Search for a Minimum : Levenberg-Marquardt Method (6)

Using some computation tricks, the ratio r (i) becomes quite
cheap and easy to calculate.
Thus, the Levenberg-Marquardt algorithm is quite easy to
implement and use, and is also pretty fast to converge. This
makes it the most convenient choice to be made for training
neural networks.
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The Search for a Minimum : Recursive Algorithms (1)

Methods discussed up to now are batch methods.
Process entire data at each iteration

We can also use recursive algorithms
Process one input/output pair at a time
θ(t) = θ(t − 1) + µ(t)f (t)
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Figure: Batch Methods and Recursive Methods
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The Search for a Minimum : Recursive Algorithms (2)

Batch Algorithms :
(-) Consume as many memory as the data size
(-) Not suitable for on-line application
(+) Suitable for complicated problems (ex. no-linear system)

Recursive Algorithms :
(+) Less memory consuming and simpler implementation
(+) Suitable for on-line applcation (ex. adaptive control)
(+) Data reduduncy is utilized effectively
(-) Not suitable for non-linear system
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The Search for a Minimum : Recursive Gauss-Newton Method (1)

An example of recursive method
Original Gauss-Newton method :

Update θ in each iteration with entire data
i.e. θ(i + 1) depends on θ(i), y(1), . . . , y(N)

Put one dataset(input/output) in each iteration
θ(t) ← (θ(t − 1), y(1), . . . , y(t))
θ(t + 1)← (θ(t), y(1), . . . , y(t), y(t + 1))

Considering that contribution to θ(t + 1) from y(1), . . . , y(t)
is neglectable, it is simplified as follows :

θ(t) ← θ(t − 1), ε(t)
θ(t + 1)← θ(t), ε(t + 1)
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The Search for a Minimum : Recursive Gauss-Newton Method (2)

Original Gauss-Newton Method :
θ(i+1) = θ(i) − R−1(θ(i))G(θ(i)) (G : gradient, R : hessian)

Change variable i to t (time series) :
θ(t) = θ(t−1) − R−1(θ(t−1)G(θ(t−1)).

G depends on θ(t−1) and Z t . (Z t : y(1), . . . , y(t))
We can split the elements containing Z t−1 and y(t) :
G(θ(t)) = t−1

t V ′

t−1(θ
t−2,Z t−1)− 1

t ψ(t , θ)ε(k , θ)
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The Search for a Minimum : Recursive Gauss-Newton Method (3)

(Show again : G(θ(t)) = t−1
t Gt−1(Z t−1)− 1

t ψ(t , θ)ε(k , θ))

Since t−1
t V ′

t−1(Z
t−1) << 1

t ψ(t , θ)ε(k , θ),

V ′

t (Z
t) = −

1
t
ψ(t , θ(t−1))ε(k , θ(t−1))

θ(t) = θ(t−1) −
1
t

R−1ψ(t)[y(t) − ŷ(t |θ(t−1))]

(while ψ(t) only depends on θ(t−1) and y(t) )
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The Search for a Minimum : Recursive Gauss-Newton Method (4)

Recursive Gauss-Newton Method is mainly for off-line system,
since adaptation speed is not enough for dynamic tracking.
There are another algorithms such as Recursive Least
Squares(RLS) algorithm. You can also modify Recursive
Gauss-Newton Method to use in on-line system.
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The Search for a Minimum : Exponential Forgetting

Sometimes it is desirble to "forget" past learning
(ex. adaptive filter)

Introduce exponential decay to criterion in order to discard
past learning

Vt(θ,Z t) =
1
2t

t
∑

k=1

λt−kεT (k , θ)ε(k , θ)

Selecting adequate λ is difficult (decay factor)
(Somtimes cause covariance blow-up)

Constant Trace and EFRA (Exponential Forgetting and
Resetting Algorithm) can prevent covariance blow-up
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Necessity of Generalization (1)

Our goal : A model which can explain any dataset
Perform test procedures:

Choose a model (including # of weights)
Determine weights(θ) with traning data
Apply the model to test data

It is desirable to explain both traning data and test data
with one model
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Necessity of Generalization (2)

If the model fits to traning data so much, it gets away from
test data. (overfitting)
What is wrong? ...

Too complicated model
Small training dataset
Much data variance

Mean square error criterion does not take these factors
into acount

More general estimation is needed
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Bias Error and Variance Error

Predicted value and real value are always different (error)
Conceptually, you can divide the error into two:

Bias error . . . comes from model inaccuracy
Variance error . . . comes from data variation

Complicated model(= with many weights) may learn
variance errors of training data
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Figure: Variance Error and Bias Error
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Akaike’s Final Prediction Error(FPE) Estimate

A measurement of a model quality V̂M = 1
2σ

2
e(1 + p

N )
(p : # of weights, N : # of training data)

Estimate errors(bias + variance) for arbital dataset only
with training data
Qualitative interpretation :

Increasing number of weights may cause overfitting
It is better to use more training data
Error with the training data is also taken into acount

In the weight determination stage, p and N is already fixed
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Regularization : Weight Decay (1)

Regularization is needed
(Not persist on training data, but create more general model)

Introducing weight decay can avoid overfitting
The real system must be simple
Weak connections are caused by errors
Put a penalty on weak connections (= small weight value),
and reduce avairable connection
Only strong connection (= large weight value) can survive

Add one term to the criterion

WN(θ,Z N) =
1

2N

N
∑

t=1

[y(t) − ŷ(t |θ)]2 +
1

2N
θT Dθ

(D is most often selected as D = αI)

α determines the strength of the penalty
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Regularization : Weight Decay (2)

With adequate weight decay, you can get a better model
No decay : the model is apart from test data
α = 1 : the model explains both traning and test data well

1<5:2<798;

<5;< 42<2

<:278786 42<2

/, -,, -/,

0
::
9
:;

+,/

+-,

+-/

+.,

89 4532= 2=5;3=7:9<

=5<= 43=3

=;379796 43=3

/, -,, -/,

1
;;
:
;<

+,/

+-,

+-/

+.,

5;;:; 5<=783=7:9

30-

Figure: Weight Decay and Errors (1)
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Regularization : Weight Decay (3)

Inadequate α causes underfitting
α = 100 : the model is worse than no decay learning
In this time, the best model is obtained when α = 1
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Main Ideas : Summary

Introduction : With changing weights, a model can express
many systems
PEM method : Criterion function can assess model
inaccuracy. To minimize the criterion, we presented some
training methods. The most basic method is
Gradient Method, and Especially
Levenberg-Marquardt Method is quite useful for practical
use. Recursive methods are suitable for on-line system.
Generalization : Sometimes overfitting and underfitting
occur. Error can be divided into bias error and
variance error. In order to measure errors,
Akaike’s Final Prediction Error is introduced.
Regularization : Weight decay serves practical way to
prevent from overfitting
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