MODEL STRUCTURE SELECTION

vibhor kumar

Sven Laur

A system is linear if it is possible to describe it by a model of the form:

 $y(t) = G(q^{-1})u(t) + H(q^{-1})e(t)$

where H and G are linear operator with time delay operator

e(t) is white noise signal independent of past inputs.

The **model structure** M is a parameterized set of candidate models

 $M \Longrightarrow \{ \mathsf{G}(\mathsf{q}^{\text{-}1},\,\theta), \ \mathsf{H}(\mathsf{q}^{\text{-}1},\theta) \mid \theta \varepsilon \mathsf{D}_{\mathsf{m}} \}$

for system $y(t) = G(q^{-1}, \theta) u(t) + H(q^{-1}, \theta) e(t)$

where $\boldsymbol{\theta}$ denotes adjustable parameters in n dimension and Dm is subset of parameters of n dimension

The model is a particular choice of parameter vector $\theta = \theta'$

Different types of Linear Model structures

- 1. The Finite Impulse Response model structure
- 2. ARX model structure (AutoRegressive, external input)
- 3. ARMAX model structure (Autoregressive, Moving Average, external input)
- 4. Output Error (OE) model
- 5. Box-Jenskins (BJ) model

The Finite Impulse response model structure

The simplest model structure where $G(q^{-1},\theta) = q^{-d}B(q^{-1})$ $H(q^{-1},\theta) = 1$ The predictor is given by $\hat{y}(t|\theta) = q^{-d}B(q^{-1}) u(t)$, input predicted output input This system has no poles and is stable

ARX model structure (Autoregressive, external output)

The matrix G has poles as output is also dependent on past inputs

so
$$G(q-1,\theta) = q^{-d} \frac{B(q^{-1})}{A(q^{-1})}$$
 and $H(q-1,\theta) = 1$
 $A(q^{-1})$

The predictor is always stable and is given by

 $\hat{\mathbf{y}}(t|\theta) = q^{-d}B(q^{-1}) u(t) + [1 - A(q^{-1})] y(t)$

Example: Identification of a DC motor

The system can be written as y(t) = a y(t-1) + b u(t-1) ARMAX model structure (Autoregressive, moving average, external input)

The matrix G and H both have poles and zeros as output is dependent on past and present inputs as well as past prediction error

example: balancing of airoplanes in flight using movement from desired tilt as error.

Output error model structure (OE)

If the noise affecting the system is white measurement noise then matrix H can written as $H(q-1,\theta) = 1$ where as matrix still remains as $G = q^{-d} \frac{B(q^{-1})}{F(q^{-1})}$ The predictor is: $\hat{y}(t|\theta) = q^{-d}B(q^{-1})u(t) + [1 - F(q^{-1})]y(t)$

The Box-Jenkins (BJ) structure provides a complete model with disturbance properties modeled separately from system dynamics.

Box-Jenkins Model Structure

The Box-Jenkins model is useful when you have disturbances that enter late in the process. For example, measurement noise on the output is a disturbance late in the process.

SSIF (State Space Innovations Form)

It is an alternative to input-output model structure

When the state of the system is represented by x(t).

State update and output follow the equations

$$\begin{aligned} x(t+1) &= A(\theta)x(t) + B(\theta)u(t) + w(t) & \qquad \text{independent white} \\ y(t) &= C(\theta)x(t) + v(t) & \qquad \end{aligned}$$

predictor for linear state space model optimal predictor is known as kalman filter which can be summarised

The Discrete Kalman Filter

UPDATE (prediction)

(1) Project the state ahead

$$\hat{x}_k = A\hat{x}_{k-1} + Bu_{k-1}$$

(2) Project the error covariance ahead

$$P_k^{\circ} = AP_{k-1}A^T + Q$$

Correction (filtering)

(1) Compute the Kalman gain

$$K_{k} = P_{k}^{T}H^{T}(HP_{k}^{T}H^{T} + R)^{-1}$$

(2) Update estimate with measurement \boldsymbol{y}_k

$$\hat{x}_k = \hat{x}_k + K_k (\mathbf{y}_k - H\hat{x}_k)$$

(3) Update the error covariance

$$P_k = (I - K_k H) P_k^{\dagger}$$

Where P_k is estimation error covariance and K_k is Kalman gain.

Nonlinear Model Structures based on neural network

1. NNFIR

2. NNARX

NNFIR and NNARX systems are free of noise so both systems are deterministic

Nonlinear Model Structures based on neural network

3. NNARMAX

They take noise in to account. These model are more difficult to design than that of **NNARX** model, **as** these models are recurrent.

Nonlinear Model Structures based on neural network

Is not straight forward to apply.

Hybrid model structure:

In this way, some prior knowledge can be incorporated into the black box model to reduce its complexity and improve its adaptation and prediction properties.

Hybrid models of linear and non-linear systems can be designed. hybrids can be made of

Regressions Neural Networks Fuzzy Logic based models

