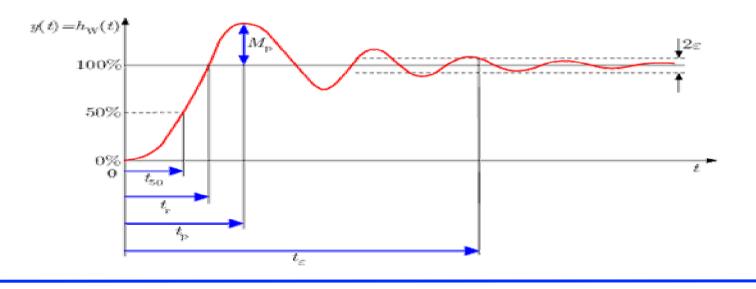
Introduction to Control Direct Inverse Control

Mikael Pohjola

Introduction to Control

- Make the system behave in a desired manner
- Control the response
 - Speed
 - Overshoot, rise-time...
 - Disturbance rejection
- Depends on the system: actuators, process, measurements
- Result should be stable



Design

- Regulator problem
 - Keep output constant
 - E.g. room temperature
 - Disturbance rejection

- Servo problem
 - Output follows a trajectory
 - E.g. controlling a robot
 - Close tracking

Design goals

- Closed loop follow a prescribed transfer function
 - Cancellation of non-linearities
 - Resulting closed-loop transfer function linear
 - Pole placement
 - Model Reference Controller

- Minimize quadratic cost function
 - Closed loop non-linear
 - Intuitive
 - Minimum variance
 - Predictive control
 - Optimal control

Control Strategy Design

- Direct design
 - NN the controller
 - Implementation simple
 - Tuning difficult
 - Usually model based
 - Direct inverse control
 - Internal model control
 - Feedback linearization
 - Feedforward with inverse models
 - Optimal control

- Indirect design
 - NN model of process
 - Always model based
 - Controller designed online
 - Flexible
 - Approximate pole placement
 - Minimum variance
 - Predictive control

Neural Networks in control

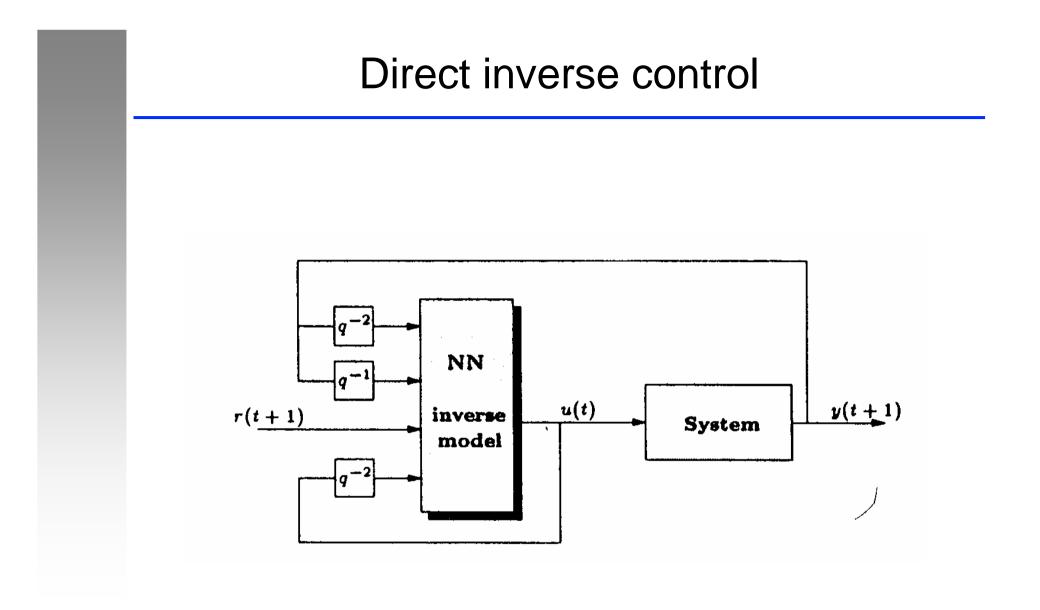
- Non-linear systems
 - When linear can not be used
 - More difficult
 - Adaptive control, online tuning
- No notion of zeros or poles
 - Stability not guaranteed
 - Limited class of systems, accurate mode, known inaccuracies...
 - Can be locally stable/unstable
- NN too flexible in some cases
 - E.g. adaptive control of time-variant systems

Direct inverse control

• System

$$y(t+1) = g(y(t), \dots, y(t-n+1), u(t), \dots, u(t-m))$$

- Controller: inverse of the system $\hat{u}(t) = \hat{g}^{-1}(y(t+1), y(t), ..., y(t-n+1), u(t-1), ..., u(t-m))$
 - Isolates the most recent control input
 - Replace y(t+1) by the desired output r(t+1) $u(t) = \hat{g}^{-1}(r(t+1), y(t), ..., y(t-n+1), u(t-1), ..., u(t-m))$
- If inverse exact, the output is the reference
 - dead-beat controller



Process with delay

- Delay, d y(t+d) = g(y(t+d-1),...,y(t+d-n),u(t),...,u(t-m))
- Controller $\hat{u}(t) = \hat{g}^{-1}(r(t+d), y(t+d-1)..., y(t+d-n), u(t-1), ..., u(t-m))$
- Unknown y(t+1)...y(t+d-1)
- Solution: prediction

The inverse model

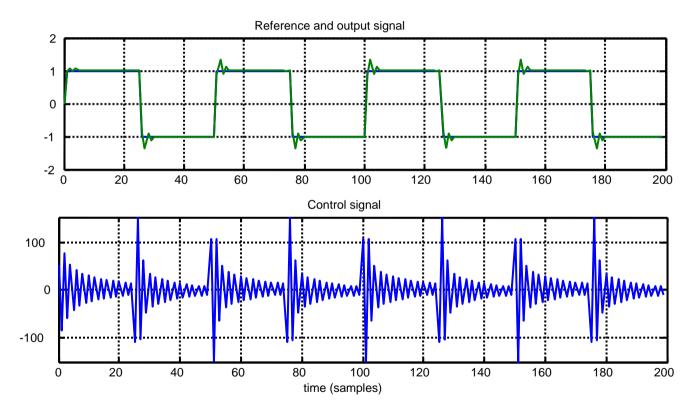
- System identification in the inverse direction: y→u
- Offline: general training
- Online: special training
- Training inverse model with realistic signals
 - Iterative offline training

General training

- Minimize: $J(\theta, Z^N) = \frac{1}{2N} \sum_{t=1}^{N} (u(t) \hat{u}(t|\theta))^2$
- Back propagation, Levenberg-Marquardt
- Earlier lectures: tools to do non-linear control

Benchmark system

 $\ddot{y}(t) + \dot{y}(t) + y(t) + y^{3}(t) = u(t)$



Issues

- Sensitive to noise
- Poor robustness
- Large control signals
- Inverse model unstable or does not exist

Conclusion

- Introduction to control
 - Regulator/Servo-problem
 - Direct/Indirect control
 - Design goals
- Direct Inverse Control
 - NN controller inverse of system
 - General training