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Introduction

• There is many possible model structures for nonlinear black-box

modelling

• In this presentation a short overview is given
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Neural Networks

• Neural networks are a general class of approximators

• Suppose φk(·; θk) : Rd → R are (nonlinear) mappings

• A two layer (one dimensional) neural network is a function of the

form g(t; w, θ) =
∑l

k=1 wkφk(t; θk).

• w and θ are the parameters of the network

• Each activation function φk corresponds to one neuron
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Multilayer Neural Networks

• By adding multiple layers the approximation properties can be

improved

• Parameter estimation becomes more difficult

• Theoretically the MLP is a difficult topic as approximation results are

hard to obtain

– http://math.tkk.fi/ ggripenb/ggpub.htm

5



Recurrent Neural Networks

• Time dependent networks
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Choice of the Nonlinear Mapping (1)

• We suppose that each neuron is a mapping of the form

φk(t) = κ(t, βk, γk)

• Next some possibilities for this mapping will be listed
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Choice of the Nonlinear Mapping (2)

• Splines

• Radial functions

φk(t) = κ(‖t − γk‖k)

• Ridge functions

φk(t) = κ(βT
k t + σk)

– A typical choice for κ is tanh

– Any continuous functions can be approximated with this

nonlinearity

• Wavelets
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Choosing parameters

• Parameters can be chosen by minimizing some cost function

• A common choice is the maximum likelihood cost:

N∑

i=1

(yi − g(xi; θ))
2

• The pairs (xi, yi) form the training set

• A nonlinear optimization technique like the conjugate gradient

method can be used

• To avoid overfitting a test set can be used
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Basis Function Networks

• First a basis G in some function space is chosen

• Let (φk)N
k=1 be a finite subset of G

• A basis function network is a neural network of the form

g(t; w) =
N∑

k=1

wkφk(t)

• The approximator is linear in parameters which simplifies parameter

estimation
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Choice of the Basis (1)

• The most common choice is a radial basis:

φk(t) = κ(‖(t − γk)‖k)

• The centers for the basis can be chosen with vector quantization

• Another possibility is using wavelets which are functions of the form

φk(t) = κ(βk(t − γk))
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Choice of the Basis (2)

• The set (φk)N
k=1 can be chosen in many ways

• Residual based selection

– At each step those basis functions that best fit the residual are

chosen

• Stepwise selection by orthogonalization

• Backward elimination

– At each step functions are removed so that the error grows as little

as possible
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Conclusions

• The most commonly used approximators are the MLP (ridge

functions) and radial basis function networks (RBFN)

• For RBFNs simple and fast techniques can be used for basis selection

• Ridge functions have better approximation properties but lead to a

nonlinear optimization problem
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