Searching the Web
What is this Page Known for?

Luis De Alba
Idealbar@cc.hut.fi
Searching the Web

Arasu, Cho, Garcia-Molina, Paepcke, Raghavan
Stanford University
Introduction

- People browse the Web using entry Points or using a Search Engine (many)
- The Web is Massive, No Coherent, Changes rapidly and it is geographically distributed.
- Over 8 billion pages.
- In .com domain 40% pages expected to change daily.
Introduction

- Studies aim to Web’s linkage structure and how it can be modeled.
- Web is somewhat like a “bow tie”.

28% Core

22% Reach from Core

22% Reach Core
Search Engine

- How a Web search engine is typically put together.
Crawlers are programs that browse the Web on the search engine’s behalf.

Crawl Control module: to keep crawlers working and in which way.
Indexer & Repository

- **Indexer**: Extracts words from each page and records URLs.
- **Repository**: Collection (temporary) of retrieved pages.
Query Engine & Ranking

- Query E: Receives and fills Search Request from Users.
- Ranking: Due to Web size results are very large, hence the ranking will sort them.
Modules

- Crawling
- Storage
- Indexing
- Ranking
Crawling

- Start with an initial Set of URL’s

URL
-X-
-Y-
-Z-

Web

Go for Page X

Page Selection and Refreshing methods

URL
-Y-
-X1-
-Z-
-X3-
-X5-

...
Crawling

- What pages to Download?
 - Not all, only “important” ones, prioritizing the Queue.

- Refreshing pages.
 - Download pages then “revisit” to update if changed. Impact on “freshness”.

- Load on the visited Web sites.
 - Consuming resources belonging to others.
Crawling – Page Selection

- Importance Metrics: good pages to visit.
 - Interest Driven: Similar words in Page and Query. Relationship between how many times the Word appear in the Web and in the Page. (Web size).
 - Popularity Driven: Links that point to Page P from any other Page P' (Web size).
 - Location Driven: URL, fewer slashes, .com
Crawling – Page Selection

- Crawler Models: visiting mainly high-importance pages.
 - Crawl & Stop: Start at Page \(P \) and stop after \(K \) Pages. Some may be of high Importance.
 - Crawl & Stop + Threshold: \(T \) is Importance target. Only accept above/equal \(T \).

- Ordering Metrics: order URLs in queue due to importance.
Crawling – Refresh

- Pages are maintained up-to-date
- Freshness Metric:
 - Local page vs. real world counterpart.
 - Collection of Pages calculations:
 - Freshness: how fresh the collection is.
 \[F(e_i; t) = \begin{cases} 1 & \text{if } e_i \text{ is up-to-date at time } t \\ 0 & \text{otherwise.} \end{cases} \]
 \[F(S; t) = \frac{1}{N_{t-1}} \sum_{i=1}^{N} F(e_i; t). \]
 - Age: how old the collection is.
 \[A(e_i; t) = \begin{cases} 0 & \\ t - \text{modification time of } e_i \end{cases} \]
 \[A(S; t) = \frac{1}{N_{t-1}} \sum_{i=1}^{N} A(e_i; t). \]
Crawling – Refresh

- Refresh Strategy
 - Uniform or Proportional refresh policy.
 - Available resources.
 - What page to refresh? Poisson process.

![Diagram](image)
Storage

- Key challenges

Dual Access: Random Page Collection of Pages

Scalability

Updates

Obsolete
Storage – Design

- Page distribution: to which node to assign.
 - Uniform Distribution: all nodes are treated identically, page can go to any node.
 - Hash Distribution: page allocation depends on page identifiers.
Storage – Design

- Physical Page Organization: operations to be executed, addition / streaming / random page access.
 - Hashed organization based on identifiers.
 - Log structures with B-tree index of locations
 - Hash-Log
Storage – Design

- Update Strategies: dependant to crawler characteristics.
 - Batch Mode Crawler, “some day some time”.
 - Steady Crawler, runs with no pause.
 - Partial/Complete Crawls, specific set of pages or sites.

- Shadowing: cache and then update
Indexing

- Process:

 - Loading
 - Processing (inverter)
 - Flushing

Page Stream → Memory → Storage
Indexing

- Indexer module builds two indexes:
 - Link Index: portion of the Web is modeled as a graph. Edge A to B represent a hyperlink. Given page P, get incoming and outward links. (Web size)
 - Text (content) Index: Primary method to identify pages relevant to a query.
 - Inverted indexes, index structure choice of the Web.
Indexing – Inverted Index

- Inverted list for a term is a sorted list of locations where the term appears.
- Location: Page Identifier & Position in the Page.
Indexing – Partitioning

- How to add the inverted list?
 - Local Inverted File, different nodes with different subsets of pages. Queries are broadcasted to all nodes.
 - Global Inverted File, each server stores only a subset of terms.
 - [a-m] => Node 1
 - [n-z] => Node 2
Indexing – Threads

- Experiments showed that sequential index-builder is 30%-40% slower than pipelined one.
Indexing – Statistics

- Statistics are often used to rank search results.
- Statistics can be computed by the indexing system.
 - IDF inverse document frequency
 - $\log(N/df_w)$
 - N pages in collection
 - df_w pages where w occurs
Ranking

- Pages that contain the search terms may be of poor quality or not relevant.
- Web pages are not sufficiently self-descriptive. Can be manipulated.

Link Structure:
- If A links to B then author of A recommends B.
- At Global Level it is robust against spamming.
Ranking – Page Rank

- “Importance” of a page.
- Importance of pages that point to A and Importance of pages that A points to.
- Recursive, Depends and Influences other pages.
Ranking – Page Rank

- Simple Page Rank:
 - Assume that Web pages form a strongly connected graph.
 - $N(i)$ denotes number of outgoing links \(i \)
 - $B(i)$ denotes the set of pages that point to \(i \)
 - $r(i)$ denotes Page Rank of page \(i \)

$$r(i) = \sum_{j \in B(i)} \frac{r(j)}{N(j)}$$
Practical Page Rank

- Web is far from strongly connected.
 - Rank Sink, no links point outwards.
 - Rank Leak, page with no links.
 - Random Surfer will get stuck or lost.
- Remove the Leak nodes and add a decay factor d.
 - Leak nodes will point back.
 - Random Surfer jumping randomly (decay factor)
Ranking – Page Rank

- Computational Issues.
 - Important value is the Page Order given by the Page Rank not the Values of the Page Rank.
 - Is not necessary to “finish” the iterations.
 - Algorithm can be stopped when values start to converge.
HITS, Hypertext Induced Topic Search

Instead of global rank it is Query-Dependant.

Produces two scores, Authority and Hubs.

- *Authority* pages are most likely to be relevant.
- *Hub pages* point to several authority pages.
Ranking – HITS

- **Algorithm**
 - Using the Query String
 - Identify a small subgraph of the Web and search for Authorities and Hubs.
 - Form a root set R and expand it to the pages in the neighborhood.
 - Link Analysis,
 - Authority Value = number of Hubs pointing to it.
 - Hubs Value = number of Links pointing to Authorities.
Ranking – HITS

- Algorithm
 - Resulting set shall be rich in Authorities and Hubs.
 - Authorities usually do not point to Authorities
 - Toyota -> Honda
Conclusion

- Searching the Web is the basis for many tasks.
- Search Engines are being relied in extracting the required information with one or two input keywords.
- Audio, Video, Images, new challenges for search engines.
What is this Page Known for?

Rafiei, Mendelzon
2000.
University of Toronto
Introduction

- Objective: Given a Page/Site on what topics is this page considered an authority by the Web community?
- Page classification.
 - What is a Page/Site about?
 - How is a Page/Site perceived?
 - What is a Person known for?
Related Work

- **Methods:**
 - Page Rank.
 - HITS, Authority and Hubs.
 - Random Surfer.

- **Difference**
 - Ranking respect to a topic instead of computing a universal rank.
Random Walks

- One-Level Influence Propagation:
 - Jumps of the Random Surfer are *forward*.
 - Pages with relatively high reputations on a topic are more likely to be visited by the RS searching for that topic.
 - The number of visits of the RS depends on the pages on the same topic pointing to this one page and the reputation of those pages.
Random Walks

- Two-Level Influence Propagation:
 - The Surfer has two choices in page p
 - Transition out of page p
 - or, randomly pick any page q that has a link to page p and make a transition out of page q
 - Surfer can go Forward or Backward
Reputation of Pages

- Is not enough to use the “terms” and “phrases” that appear in a page.
 - Some terms may not be explicitly on the page.

- How to:
 - Start in page p
 - Collect all “terms” that appear in it.
 - Look at incoming links and collect “terms”.
 - Stop when incoming links have small effect.
Experiments

- Known Authoritative Pages
 - java.sun.com <Search> <Microsoft>

URL: java.sun.com 500 links examined (out of 128653 available)

Highly weighted terms: Developers, JavaSoft, Apple, JDK, Java applets, Sun Microsystems, API, Programming, Solaris, tutorial

Frequent terms: Java, Software, Computer, Programming, Sun, Development, Microsoft, Search
Experiments

- Personal Home Pages
 - Don Knuth <Dilbert>

URL: www-cs-faculty.stanford.edu/~knuth. 500 links examined (out of 1733 available)

Highly weighted terms: Don Knuth, Donald E Knuth, TeX, Dilbert Zone, Latex, ACM
Experiments

- Computer Science Departments
 - www.cs.helsinki.fi <Linux> <Linus>

URL: www.cs.helsinki.fi
500 lines examined (out of 9664 available)

Highly weighted terms: Linux Applications, Linux Gazette, Linux Software, Knowledge Discovery, Linus Torvalds, Data Mining

- www.cs.toronto.edu <Russia> <Hockey>
Conclusion

- Algorithms are working as expected but still work to do improving their “TOPIC” prototype.