T-61.6040 Special Course in Computer and Information Science IV: Information Networks

László Kozma (lkozma@cc.hut.fi)

This presentation is about:

Google web search engine

• Not about:
 – Google Corporation
 – Gmail, Google Maps, Google Docs, etc.
 – NASDAQ:GOOG
 – “Do no evil”, etc. (maybe just a few words)
Web search

- **WWW:**
 - ~30 B pages
 (source: Netcraft)
- **Search engines:**
 - crawl
 - index
 - query (by keywords)
 - rank
Web search in 1998

• Not very useful:
 – mostly junk results
 – ranking doesn't work well
 – ex.: 3 of the 4 leading search engines can't find themselves
 – ex.: “Bill Clinton” joke of the day
Web search in 1998

• Design elements:
 – term counting
 – backlink counting
 – meta tags
 – “mixed motives”
 – closed algorithms
How was Google different?

• PageRank
• Using external information
• Scalable Architecture
• Openness, “Scientific Integrity”
• AdSense
PageRank

• “Importance” of a page:
 – is it possible to measure objectively?
• “Academic citations” model
• But the web is different:
 – heterogeneous
 – no quality control
 – ease of publishing
 – manipulation
PageRank

• Basic idea:
 – links are not equally important
 – Assign a Ranking for each page
 – Ranking propagates through links (votes)
 – “votes” evenly distributed among outgoing links
PageRank

- Simplified Ranking

\[R(u) = c \cdot \sum_{v \in B_u} \frac{R(v)}{|F_v|} \]

- u – web page
- Fu – forward link pages
- Bu – backward link pages
PageRank

• “Random Surfer” Model:
 – PageRank as probability distribution

• Problem with previous formula:
 – source sinks
 – Solution: damping factor (random surfer gets bored)
 – Pagerank with damping (typically \(d=0.85 \)):

\[
PR(u) = \frac{1-d}{N} + d \cdot \sum_{v \in B_u} \frac{PR(v)}{|F_v|}
\]
PageRank

• Computing PageRank: Iterative approach
• Convergence:
 – Affected by graph structure (good “expansion factor”)
 – Initial values don't affect result, just convergence speed
 – Typically ~log(N) nr. of iterations.
• Variants: personalized PageRank
• Manipulation
Meta-data

• Ranking of search results:
 – PageRank
 – Relevance to query

• Anchor text
 – Often describes a page better than the content itself
 – Can be abused through coordinated effort

• Other information:
 – Visual details
 – Page update frequency
 – Search term proximity
Google Architecture

- Overview
- Data Structures
- Crawling
- Indexing
- Searching
Google Architecture
Data Structures

• BigFiles
• Repository
• Document Index
• Lexicon
• Hit Lists
• Forward Index
• Inverted Index
• Crawling
• Indexing:
 – Parsing
 – Indexing into Barrels
 – Sorting
Searching

1. Parse query
2. Convert words into wordID
3. Seek start of doclist for every word
4. Scan through doclist until there is document matching all terms
5. Compute rank of document for query
6. If we are not at the end of any doclist and we haven't reached max. nr. of documents, go to 4
7. Sort matched documents by rank, return top k.
Conclusions

• Original papers present Google as research project
• Commercial success largely due to technical superiority
• Influence:
 – On everyday life
 – On businesses
• AdSense, AdWords:
 – Made Google viable commercially
 – Changed the web by providing an easy way to monetize content
• Google:
 – Monitor the web, grow with it
 – Influence the web (SEO industry)
“Do no evil”

• Privacy
• Filtering results
 – Google bombs
 – Link farms
 – Illegal stuff
 – Political issues
• Transparency (search data)
• Transparency (algorithms)
Thanks for the attention.