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Introduction

Automatic Relevance Determination is a classical method
based on Bayesian interference.

In this presentation we show how it can be applied to Least
Squares Support Vector Machines.

As a result we get a method for estimating hyperparameters
and choosing inputs.
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Least Squares Support Vector Machines

We assume that the dataset (yi , xi )
N
i=1 is available.

The inputs (xi ) are in ℜn for a finite n.

Assume φ : ℜn → H is a mapping to some high (infinite)
dimensional space.

We model the outputs y by y = ωTφ(x) + b.

As is common, we won’t do totally rigorous mathematical
analysis.
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The Cost Function

LS-SVM differs from SVM in the cost function:

I = γE1 + ξE2 =
γ

2
‖ω‖2 +

ξ

2

N∑
i=1

e2
i , (1)

where ei = (yi − ωTφ(xi ) − b).

Note that we use two hyperparameters to get a Bayesian
interpretation.
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Optimization of the Cost

The mapping φ is very hard to handle as such.

The solution: we require φ(x)T φ(y) = K (x , y) for some
kernel K .

The kernel often contains an additional parameter.

By a simple manipulation with the Lagrangian, it can be seen
that the approximator becomes

y(x) =

N∑
i=1

αiK (x , xi ) + b (2)

with the condition
∑N

i=1 αi = 0 and a L2 regularized cost
function.

Thus we have ended up with a well-known Gaussian process
model.

Solving for αi is elementary (this is in fact a form of RBF).
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Bayesian Interference

We skip the philosophical questions behind Bayesian methods.

Automatic Relevance Determination is based on Bayesian
interference on three levels.

ARD is a classical method and can be applied to many other
models (MLP,RBF...).

In what follows, H denotes the model and D is the data.

We assume no prior knowledge of the problem which means
that flat priors are used whenever necessary.
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First Level of Interference

Assume that the sample (xi , yi ) is iid. Recall the cost

I = γE1 + ξE2. (3)

In the first level the hyperparameters γ and ξ are assumed to
be fixed.

We assume the prior p(w) ∼ exp(−γ‖w‖2).

For the observations we assume
p(yi |xi , ω, b, ξ,H) ∼ exp(− ξ

2
e2
i ).

This is a model with a Gaussian prior and a Gaussian noise
model.
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Interference on the First Level

With the assumptions of the previous slide, we get

p(ω, b|D, γ, ξ,H) ∼ exp(−I(D, γ, ξ, ω, b)) (4)

It follows that given the hyperparameters, finding the
maximum likelihood for p(ω, b|D, γ, ξ,H) is equivalent to
minimizing the cost I.
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Second Level of Interference

In the second level we examine p(ξ, γ|D,H).

We write

p(ξ, γ|D,H) ∼

∫
p(D|w , b,H)p(w , b|ξ, γ,H)p(ξ, γ|H)dwdb

We assume a non-informative prior for the hyperparameters.

This can be solved in closed form. Thus no approximation is
needed on the second level.
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The Cost Function on the Second Level (1)

Using the previously derived formula, we get

p(ξ, γ|D,H) ∼
γnf /2ξN/2

|H|−1/2
exp(−I(ωMAP , bMAP)). (5)

Here H is the Hessian of the cost function and nf is the
dimension of the space in which φ maps the inputs.

Typically nf >> 1 and the Hessian H is not available as such.
However, it turns out that this is not a problem.
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The Cost Function on the Second Level (2)

By recalling the condition φT (xi )φ(xj ) = K (xi , xj), it is
possible to derive a maximum likelihood cost function for the
hyperparameters.

The compute a value of the cost, a first level optimization
must be done together with solving the eigenvalues of the
so-called centered Gram matrix.

The optimization problem is one dimensional.

The derivation in the paper can certainly be done without the
SVM context.
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The Third Level of Interference

Recall that by H we denoted the model structure (including
kernel parameters, selected inputs).

In the third level we write (assuming non-informative priors)

p(D|H) =

∫
p(D|γ, ξ,H)P(ξ, γ|H)dξdγ

∼ p(D|γMAP , ξMAP ,H)DγDξ. (6)

The terms Dγ and Dξ are the second derivatives of the second
level cost function at the optimum.

All the approximations made are well-known.
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Input Selection

Now that we can evaluate the evidence p(D|H) of models,
input selection is easy.

A combination of inputs is evaluated by doing the three level
of interference to calculate kernel parameters and
hyperparameters.

Scaling of input variables is implemented in the same way.

All this is already done in the LS-SVM toolbox.
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Practical Point of View

The method seems too heavy for many applications (this
holds to LS-SVM in general).

In the course we will use second level interference.

An alternative to ARD is to use LOO or use them together.

LOO has a computational cost of the same order.
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Experiment

We examine a linear model with ten Gaussian inputs and
Gaussian noise.

Backward selection with ARD is made.
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Results

The first experiment was done with noise 15% of the output.

The second experiment was done with noise 30% of the
output.

The first experiment was solved optimally. The results of the
second are in the figure.
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Results (2)
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Figure: The best possible MSE for backward selection with optimal
inputs, ARD chosen inputs and LARS chosen inputs.
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Conclusion

ARD is a classical method for choosing model parameters.

In this presentation we showed how to use it for LS-SVM.

The resulting algorithm is heavy to calculate but fully
automatic.

In the project work we will combine ARD with grid-search for
hyperparameter estimation.
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