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Introduction

m Automatic Relevance Determination is a classical method
based on Bayesian interference.

m In this presentation we show how it can be applied to Least
Squares Support Vector Machines.

m As a result we get a method for estimating hyperparameters
and choosing inputs.
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Least Squares Support Vector Machines

We assume that the dataset (y,-,x,-)f\’:1 is available.

The inputs (x;) are in R" for a finite n.

Assume ¢ : R" — H is a mapping to some high (infinite)
dimensional space.

We model the outputs y by y = w’ ¢(x) + b.

As is common, we won't do totally rigorous mathematical
analysis.
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The Cost Function

m LS-SVM differs from SVM in the cost function:
0 £ &
Z:7E1+§E2:§||w||2+§;ei2v (1)
1=

where e; = (y; — w’ é(x;) — b).
m Note that we use two hyperparameters to get a Bayesian
interpretation.
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Optimization of the Cost

m The mapping ¢ is very hard to handle as such.

m The solution: we require ¢(x)" ¢(y) = K(x, y) for some
kernel K.

m The kernel often contains an additional parameter.

m By a simple manipulation with the Lagrangian, it can be seen
that the approximator becomes

N
y(x) = Z aiK(x, x;) + b ()

with the condition Z,N:1 a; =0 and a L? regularized cost
function.

m Thus we have ended up with a well-known Gaussian process
model.

m Solving for «; is elementary (this is in fact a form of RBF).
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Bayesian Interference

We skip the philosophical questions behind Bayesian methods.

Automatic Relevance Determination is based on Bayesian
interference on three levels.

ARD is a classical method and can be applied to many other
models (MLP,RBF...).

In what follows, H denotes the model and D is the data.

We assume no prior knowledge of the problem which means
that flat priors are used whenever necessary.
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First Level of Interference

Assume that the sample (x;, y;) is iid. Recall the cost

In the first level the hyperparameters v and £ are assumed to
be fixed.

We assume the prior p(w) ~ exp(—~||w||?).
For the observations we assume
p(yilxi,w, b,§, H) NeXp( 5 2)
This is a model with a Gau55|an prior and a Gaussian noise
model.
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Interference on the First Level

m With the assumptions of the previous slide, we get

P(w7b|D7%§7H) ~ exp(_I(D777€7w7b)) (4)

m It follows that given the hyperparameters, finding the
maximum likelihood for p(w, b|D,~, £, H) is equivalent to
minimizing the cost Z.
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Second Level of Interference

m In the second level we examine p(&,~|D, H).

m We write
p(&; VD, H) ~ /p(Dlw, b, H)p(w, bl¢,~, H)p(&, v|H)dwdb

m We assume a non-informative prior for the hyperparameters.

m This can be solved in closed form. Thus no approximation is
needed on the second level.
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The Cost Function on the Second Level (1)

m Using the previously derived formula, we get

,)/nf/ZfN/Z
p(&,7|D, H) ~ ————7—exp(—Z(wmar, bmar)). ()
|H| 1/2

m Here H is the Hessian of the cost function and nf is the
dimension of the space in which ¢ maps the inputs.

m Typically nf >> 1 and the Hessian H is not available as such.
However, it turns out that this is not a problem.
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The Cost Function on the Second Level (2)

m By recalling the condition ¢ (x;)p(x) = K(xi, x;), it is
possible to derive a maximum likelihood cost function for the
hyperparameters.

m The compute a value of the cost, a first level optimization
must be done together with solving the eigenvalues of the
so-called centered Gram matrix.

m The optimization problem is one dimensional.

m The derivation in the paper can certainly be done without the
SVM context.
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The Third Level of Interference

m Recall that by H we denoted the model structure (including
kernel parameters, selected inputs).

m In the third level we write (assuming non-informative priors)

p(DIH) = / p(Dly, £, H)P(€, 7| M) dEdy
~  p(Dlymap; Emap, H) Dy Ds. @

m The terms D, and D are the second derivatives of the second
level cost function at the optimum.

m All the approximations made are well-known.
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Input Selection

m Now that we can evaluate the evidence p(D|H) of models,
input selection is easy.

m A combination of inputs is evaluated by doing the three level
of interference to calculate kernel parameters and
hyperparameters.

m Scaling of input variables is implemented in the same way.
m All this is already done in the LS-SVM toolbox.
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Practical Point of View

m The method seems too heavy for many applications (this
holds to LS-SVM in general).

m In the course we will use second level interference.
m An alternative to ARD is to use LOO or use them together.

m LOO has a computational cost of the same order.
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Experiment

m We examine a linear model with ten Gaussian inputs and
Gaussian noise.

m Backward selection with ARD is made.
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Results

m The first experiment was done with noise 15% of the output.

m The second experiment was done with noise 30% of the
output.

m The first experiment was solved optimally. The results of the
second are in the figure.
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Results (2)
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Figure: The best possible MSE for backward selection with optimal
inputs, ARD chosen inputs and LARS chosen inputs.

A\

18 /19



Conclusion

m ARD is a classical method for choosing model parameters.
m In this presentation we showed how to use it for LS-SVM.

m The resulting algorithm is heavy to calculate but fully
automatic.

m In the project work we will combine ARD with grid-search for
hyperparameter estimation.
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