Automatic Relevance Determination

Elia Liitiäinen (eliitiai@cc.hut.fi)

Time Series Prediction Group Adaptive Informatics Research Centre Helsinki University of Technology, Finland

October 24, 2006

Introduction

- Automatic Relevance Determination is a classical method based on Bayesian interference.
- In this presentation we show how it can be applied to Least Squares Support Vector Machines.
- As a result we get a method for estimating hyperparameters and choosing inputs.

Outline

1 Least Squares Support Vector Machines

2 Bayesian Interference for Model Parameter Selection

3 Experiment

Least Squares Support Vector Machines

- We assume that the dataset $(y_i, x_i)_{i=1}^N$ is available.
- The inputs (x_i) are in \Re^n for a finite n.
- Assume $\phi : \Re^n \to \mathcal{H}$ is a mapping to some high (infinite) dimensional space.
- We model the outputs y by $y = \omega^T \phi(x) + b$.
- As is common, we won't do totally rigorous mathematical analysis.

The Cost Function

LS-SVM differs from SVM in the cost function:

$$\mathcal{I} = \gamma E_1 + \xi E_2 = \frac{\gamma}{2} \|\omega\|^2 + \frac{\xi}{2} \sum_{i=1}^{N} e_i^2,$$
 (1)

where $e_i = (y_i - \omega^T \phi(x_i) - b)$.

Note that we use two hyperparameters to get a Bayesian interpretation.

Optimization of the Cost

- The mapping ϕ is very hard to handle as such.
- The solution: we require \(\phi(x)^T\)\(\phi(y) = K(x, y)\) for some kernel K.
- The kernel often contains an additional parameter.
- By a simple manipulation with the Lagrangian, it can be seen that the approximator becomes

$$y(x) = \sum_{i=1}^{N} \alpha_i K(x, x_i) + b$$
(2)

with the condition $\sum_{i=1}^{N} \alpha_i = 0$ and a L^2 regularized cost function.

- Thus we have ended up with a well-known Gaussian process model.
- Solving for α_i is elementary (this is in fact a form of RBF).

Bayesian Interference

- We skip the philosophical questions behind Bayesian methods.
- Automatic Relevance Determination is based on Bayesian interference on three levels.
- ARD is a classical method and can be applied to many other models (MLP,RBF...).
- In what follows, \mathcal{H} denotes the model and D is the data.
- We assume no prior knowledge of the problem which means that flat priors are used whenever necessary.

First Level of Interference

• Assume that the sample (x_i, y_i) is iid. Recall the cost

$$\mathcal{I} = \gamma E_1 + \xi E_2. \tag{3}$$

- In the first level the hyperparameters γ and ξ are assumed to be fixed.
- We assume the prior $p(w) \sim \exp(-\gamma \|w\|^2)$.
- For the observations we assume $p(y_i|x_i, \omega, b, \xi, \mathcal{H}) \sim \exp(-\frac{\xi}{2}e_i^2).$
- This is a model with a Gaussian prior and a Gaussian noise model.

Interference on the First Level

With the assumptions of the previous slide, we get

$$p(\omega, b|D, \gamma, \xi, \mathcal{H}) \sim \exp(-\mathcal{I}(D, \gamma, \xi, \omega, b))$$
 (4)

It follows that given the hyperparameters, finding the maximum likelihood for p(ω, b|D, γ, ξ, H) is equivalent to minimizing the cost I.

Second Level of Interference

In the second level we examine p(ξ, γ|D, H).
We write

$$p(\xi, \gamma | D, \mathcal{H}) \sim \int p(D | w, b, \mathcal{H}) p(w, b | \xi, \gamma, \mathcal{H}) p(\xi, \gamma | \mathcal{H}) dw db$$

We assume a non-informative prior for the hyperparameters.
 This can be solved in closed form. Thus no approximation is needed on the second level.

The Cost Function on the Second Level (1)

Using the previously derived formula, we get

$$p(\xi, \gamma | D, \mathcal{H}) \sim \frac{\gamma^{n_f/2} \xi^{N/2}}{|H|^{-1/2}} \exp(-\mathcal{I}(\omega_{MAP}, b_{MAP})).$$
(5)

- Here *H* is the Hessian of the cost function and *n_f* is the dimension of the space in which *φ* maps the inputs.
- Typically n_f >> 1 and the Hessian H is not available as such. However, it turns out that this is not a problem.

The Cost Function on the Second Level (2)

- By recalling the condition $\phi^T(x_i)\phi(x_j) = K(x_i, x_j)$, it is possible to derive a maximum likelihood cost function for the hyperparameters.
- The compute a value of the cost, a first level optimization must be done together with solving the eigenvalues of the so-called centered Gram matrix.
- The optimization problem is one dimensional.
- The derivation in the paper can certainly be done without the SVM context.

The Third Level of Interference

Recall that by H we denoted the model structure (including kernel parameters, selected inputs).

■ In the third level we write (assuming non-informative priors)

$$p(D|\mathcal{H}) = \int p(D|\gamma,\xi,\mathcal{H})P(\xi,\gamma|\mathcal{H})d\xi d\gamma$$

~ $p(D|\gamma_{MAP},\xi_{MAP},\mathcal{H})D_{\gamma}D_{\xi}.$ (6)

- The terms D_γ and D_ξ are the second derivatives of the second level cost function at the optimum.
- All the approximations made are well-known.

Input Selection

- Now that we can evaluate the evidence p(D|H) of models, input selection is easy.
- A combination of inputs is evaluated by doing the three level of interference to calculate kernel parameters and hyperparameters.
- Scaling of input variables is implemented in the same way.
- All this is already done in the LS-SVM toolbox.

Practical Point of View

- The method seems too heavy for many applications (this holds to LS-SVM in general).
- In the course we will use second level interference.
- An alternative to ARD is to use LOO or use them together.
- LOO has a computational cost of the same order.

Experiment

- We examine a linear model with ten Gaussian inputs and Gaussian noise.
- Backward selection with ARD is made.

Results

- The first experiment was done with noise 15% of the output.
- The second experiment was done with noise 30% of the output.
- The first experiment was solved optimally. The results of the second are in the figure.

Results (2)

Figure: The best possible MSE for backward selection with optimal inputs, ARD chosen inputs and LARS chosen inputs.

Conclusion

- ARD is a classical method for choosing model parameters.
- In this presentation we showed how to use it for LS-SVM.
- The resulting algorithm is heavy to calculate but fully automatic.
- In the project work we will combine ARD with grid-search for hyperparameter estimation.

