Model validation

T-61.6040, 03.10.2006, Heli Hiisilä

Testing Neural Models: How to Use Re-Sampling Techniques? A. Lendasse

&

Fast bootstrap methodology for model selection, A. Lendasse, G. Simon, V. Wertz, M. Verleysen, Neurocomputing, Elsevier, Vol. 64, March 2005, pp. 161-181.

Problem setting

- The model is often chosen a priori based on the user experience
 - Sometimes bad choices
- How to select objectively the best model when the amount of data is limited?
 - Cross validation and bootstrap methods
 - Fast bootsrap methodology

Learning and validation sets

- Data is split into learning and validation sets (different ways in different methods)
 - Learning set is used to calculate the optimal parameters of a model once structure is established
 - Validation set is used to select specific structure in a family
 - Also test set should be used to estimate correctly the generalization error once model is built

Learning error

- The unknown relation between the input and output data is $y_t = g(x_t) + e_t$
- Model: $y_t = h^q(x_t, \theta(q))$
 - -q identifies model structure and
 - θ represents the model parameters
- Learning error: $\sum_{t=1}^{N} \left(h^{q}(x_{t}, \theta(q)) y_{t} \right)^{2}$ $E_{learn}(q, \theta) = \frac{t=1}{N}$

Genralization error

- An infinite number of data is never available
 - Generalization error is approximated on the basis of mean value derived from a finite set of validation data
 - $-\theta^*(q)$ is the best set of model parameters

$$E_{gen}(q,\theta^*(q)) = \frac{\sum_{t=1}^{M} \left(h^q(x_t,\theta^*(q)) - y_t\right)^2}{M}$$

Validation methods

- Simple validation
- Monte-Carlo Cross-validation
- K-fold Cross-Validation
- Leave-one-out
- Bootstrap and Bootstrap variants

Simple validation

- Divide data to learning and validation sets
 - keep 2/3 of the data in the learning set and 1/3 in the validation set
- Learning and validation sets are selected at random among the available data
- Results depend closely on the random split of the data
 - Bad performance, still used in many cases
 - Should not be used unless maybe when the number of available data is very large with respect to the dimension of the space

Monte-Carlo Cross-Validation

- Take several random drawings of learning and validation sets and evaluate the mean of generalization error
 - Do for example 10, 100 or 1000 random drawings
 - Generalization error estimate is the mean of the errors computed on the validation sets
 - If the learning process is slow, the number of draws J is limited
 - Because of the random drawings, it is not certain that each data is used as often for learning as for the validation

K-fold Cross-Validation

- Variant of Monte-Carlo Cross-Validation
 - Divide the set of N available data into K disjoined subsets having almost the same size
 - Use K-1 data sets in learning and one for the validation; learning and validation done K times
 - Generalization error is an average of the results with different K learning and validation sets

Leave-one-out

- K-fold Cross-Validation carried to extremes: K=N
 - N models are built on basis of N-1 data
 - Tested with one data
 - Gives good results with only large data sets

Bootstrap

- Learning set: draw N data points randomly from the original data set
 - some samples may be left out, some may appear multiple times
 - process is called re-sampling
- Validation set: origial data
- Re-sampling is done *J* times
 - J for example 10, 100, 1000 or 10000

Bootstrap: optimism

- Difference between the learning error and generalization error is called optimism
 - Optimism measures the difference between the error obtained on the initial data set and the error that would be obtained on an infinite group of data
- Global estimate of the optimism is calculated as an average of *J* runs
- Generalization error is then calculated using the averaged optimism and learning error for each model structure q

Bootstrap 632

- Bootstrap method gives biased estimations
 - method systematically overestimates the errors
- Bias is corrected through weighting that is different for the terms representing the learning and the generalization errors

Fast bootstrap (FB)

- Assumes that the computationally expensive term estimated by the bootstrap, the optimism, is usually a smooth function (low-order polynomial) of the complexity parameter
- Approximating the optimism term makes it possible to considerably reduce the necessary number of simulations

How to approximate Optimism?

 Optimism can be approximated by a lower-order function

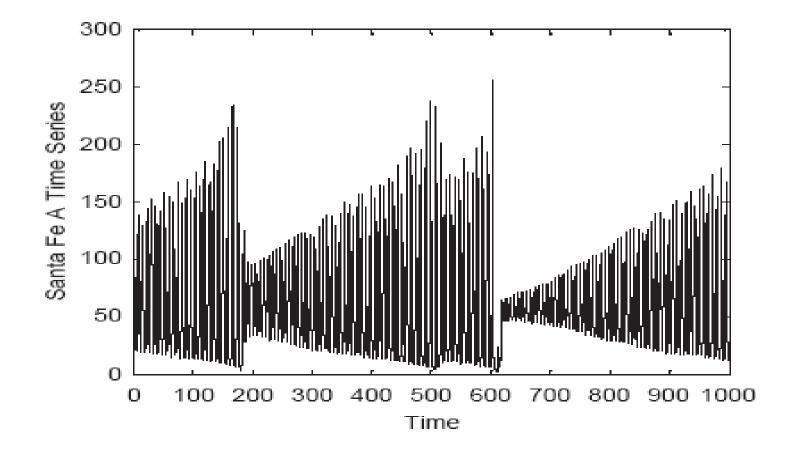
- for example a linear, quadratic or exponential

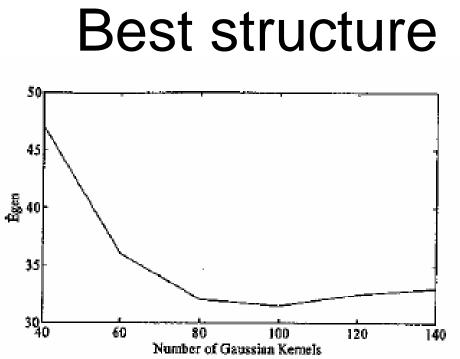
- Hypothesis of the approximation function of optimism
 - optimism is a polynomial of certain order
 - use statistical testing to test hypothesis
 - if hypothesis not accepted, try something else

Fast bootsrap

- Computational load of resampling metods is eased using an approximation of optimism
 - approximation of generalization error with considerably less iterations
 - we are able to use bootstrap resampling with computationally heavy real life applications

Example: SantaFe

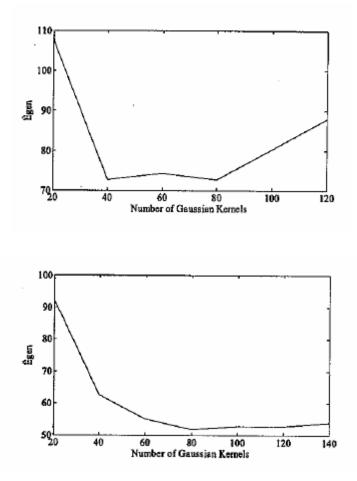




- All data used to find the best structure
 - 100 Gaussian kernels is the optimal solution
- Does the validation methods lead to similar results?
 - only first 1000 data used

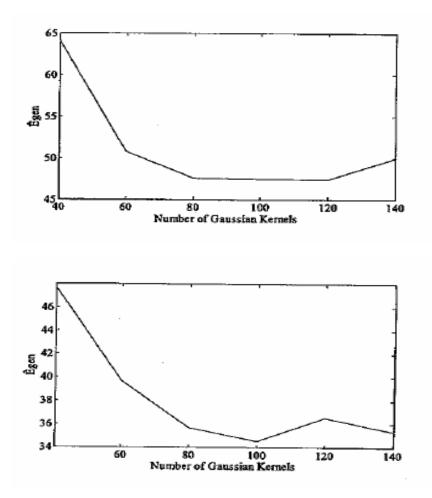
Monte-Carlo Cross-Validation and Leave-One-Out

- Monte-Carlo Cross-Validation
 - ideal models 40 or 80
 Gaussian Kernels, usually
 40 selected
 - very different from the expected value 100
 - number of iterations 100
- Leave-One-Out
 - 80 kernels
 - number of iterations 1000!



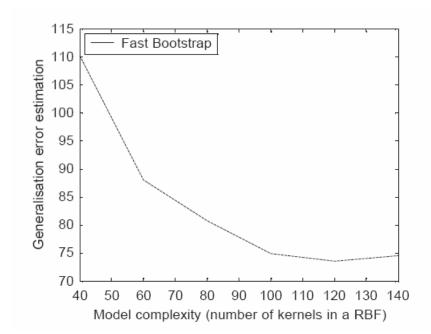
Bootstrap and Bootstrap 632

- Bootstrap
 - 120 kernels
 - 100 iterations
- Bootstrap 632
 - 100 kernels selected
 - Best results!



Fast Bootsrap

- From the second paper
 - Are the results comparable?
- 120 kernels selected
- only 20 Bootstrap replications



Comparison of the methods

- For a very large number of data, each of the methods will select the same model structure

 In reality, the amount of data is limited
- Long calculation time
 - Leave-One-Out, K-fold Cross-Validation (less)
- Bias
 - Bootstrap, corrected in Bootstrap 632
- Variance
 - Monte-Carlo Cross-Validation, K-fold Cross-Validation, Leave-One-Out
- Bootstrap methods seems to be the best ones!