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Introduction

& In the article [1], feature selection used for
classification

~* Most results probably applicable to regression

& Goal: Select feature subset that maximizes
classification performance on an unseen test set

& Different from choosing the relevant set of
features!

[1] R. Kohavi and G. H. John. Wrappers for feature subset selection. Artificial
Intelligence, 97(1-2):273-324, 1997.
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Feature subset selection

¢ Many machine algorithms degrade in performance
when 1irrelevant features are present

e Correlated, relevant features may also be harmtul
~& Feature subset selection, a definition:

~& Find a subset of features that maximizes
accuracy of classifier

& No feature extraction or construction
& Feature selection not needed for Bayes classifier

& Practical algorithms face the bias—variance tradeoft
4



Feature subset selection (2)

& Optimal feature subset defined with respect to the
induction algorithm

Definition 1

Gwen an inducer 1, and a dataset D with features X1, X9, ..., X,,, from a distribution D over the labeled

instance space, an optimal feature subset, Xopta 1s a subset of the features such that the accuracy of the
induced classifier C = (D) is mazimal.

~& Optimal feature subset not necessarily unique

& Problem: Distribution of data not known

m» Accuracy of classifier must be estimated from
data



Relevance of features

& Many definitions of relevance suggested:

Definition 2
A feature X; 1s said to be relevant to a concept C 1f X, appears in every Boolean formula that represents C
and irrelevant otherwise.

Definition 3
X; s relevant iff there exists some x; and y for which p(X; = x;) > 0 such that

pY =y | XG=2;) Zp(¥ = y) -

Definition 4
X; s relevant iff there exists some x;, y, and s; for which p(X; = z;) > 0 such that

P = E S it el e SV e S

Definition 5
X; 1s relevant iff there exists some x;, y, and s; for which p(X; = x;,5; = s;) > 0 such that

T T e, S e Vil B ] 8 e T S Yo i
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Relevance of features (2)

& [et's see how ditferent defimitions of relevance do
In practice:

Example 1 (Correlated XOR) Let features Xy, ..., X5 be Boolean. The instance space is such that X,
and X3 are negations of X4 and X5, respectively, 1.e., X4 = X5, X5 = X3. There are only eight possible
instances, and we assume they are equiprobable. The (deterministic) target concept is

e - (¢ denotes XOR) .
& Intuitively, X 1s relevant

& Both X9 and X4 are relevant, but either one can be

omitted

& Definitions of relevance fail miserably:

Definition Relevant | Irrelevant

Definition 2 X1 X23X33X43X5

Definition 3 | None All

Definition 4 | All None

Defimition 5 | X3 X9, X3, X4, X5 7%




Relevance of features (3)

& Better definitions of relevance needed

& Strong relevance and weak relevance defined in
terms of a Bayes classifier:

Definition 5 (Strong relevance)
A feature X; 1s strongly relevant iff there exists some x;, y, and s; for which p(X; = x;,5; = s;) > 0 such
that

T e e L T ) e LR

Definition 6 (Weak relevance)
A feature X; 1s weakly relevant iff it 1s not strongly relevant, and there exists a subset of features S. of \S;
for which there exists some x;, y, and s; with p(X; = z;,S; = s;) > 0 such that

PR = g | = = st =S =

& In Example 1, X; strongly relevant, X9 and X4

weakly relevant, X3 and X5 irrelevant



Relevance and optimality

& Bayes classifier uses:

& All strongly relevant features

& Possibly some weakly relevant features
& For practical classifiers:

& Relevance does not imply membership 1n
optimal feature subset

& Jrrelevance does not imply that a feature
should not be in optimal feature subset

& Examples available, omitted here...
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Filter approach

Input Feature Induction
features subset selection Algorithm

Figure 2: The feature filter approach, in which the features are filtered independently of the induction
algorithm.

& Feature selection done as a preprocessing step

& Drawback: Eftect of feature selection on induction

algorithm not known

& Algorithm called Relieved-F (based on Relief)

used In comparisons

& Attempts to find all relevant features
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Wrapper approach

Training set o Training set
S Feature selection search S :
> Induction
e A\ Performance Feature set :
estimation = Algorlthm
Feature evaluation
Feature set \l/ /]\ Hypothesis
Induction Algorithm
V
; - Estimated
Test set =| Final Evaluation =
Accuracy

Figure 1: The wrapper approach to feature subset selection. The induction algorithm 1s used as a “black
box” by the subset selection algorithm.
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Wrapper approach (2):

state space search

Fach state represents a feature subsets

State 1s boolean vector with

1 = feature present, 0 = feature absent

Wrapper method searches state space trying to
find best features

“Black box” induction algorithm evaluates states

State

A Boolean vector, one bit per feature

Initial state

The empty set of features (0,0,0..., 0)

Heuristic/evaluation

Five-fold cross-validation repeated multiple times with a
small penalty (0.1%) for every feature.

Search algorithm

Hill-climbing or best-first search

Termination condition

Algorithm dependent (see below)
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Wrapper approach (3):

connectedness of states

—— Empty feature subset

0,1,1,1

GilD Full feature set

Figure 5: The state space search for feature subset selection. Each node 1s connected to nodes that have one

feature deleted or added. 3



Experimental setting:
Datasets

Table 2: Summary of datasets. Datasets above the horizontal line are “real” and those below are artificial.
CV 1indicates ten-fold cross-validation.

no. Dataset Features no. Train Test  baseline
all nominal continuous classes  size size  accuracy

1 breast cancer 10 0 10 2 699 CV 65.52
2 cleve 13 T 6 2 303 CV 54.46
e 15 9 6 2 690 CV 55.51
4 DNA 180 180 0 3 2000 1186 51.91
5 horse-colic 22 15 % 2 368 CV 63.04
6 Pima 8 0 8 g 768 CV 65.10
7 sick-euthyroid 25 18 7 2 2108 1095 90.74
8 soybean-large 39 35 0 19 683 CV 13.47
9 Corral 6 6 0 2 25 128 56.25
10  m-of-n-3-7-10 10 10 0 Z 300 1024 77.34
11 Monkl 6 6 0 7 2 50.00
12 Monk2-local 17 17 0 o 169 432 67.13
13 Monk?2 6 6 0 2 169 432 b3
14 Monk3 6 6 0 2 22 432 H2.78

* Accuracy when simply predicting the majority class 14



Experimental setting:

Induction algorithms

& Two families of induction algorithms used 1n the
paper
& (Induction algorithms build classifiers)
1. Decision tree algorithms
* (CA.5, builds trees top-down and prunes them
e ID3, no pruning
2. Naive-Bayes

p( =y| X =1 >
= e e R S L = by Bayes rule
—z1,.... Xpn=2z, | Y =¢) - p(Y =y) p(X = Z) is same for all label values.

(X
o< p(X1
=Ty = e =T by mdepen@
1;[ < “Naive” 15




Search engines for wrapper approach:

Hill-climbing search

& The simplest search technique
& Also called “greedy search” or “steepest ascent”

& Move to child with highest accuracy, terminate
when no improvement

Table 3: A hill-climbing search algorithm

1. Let v <« initial state.

2. Expand v: apply all operators to v, giving v’s children.
3. Apply the evaluation function f to each child w of v.
4. Let v' = the child w with highest evaluation f(w).

5. If f(v') > f(v) then v « v'; goto 2.

6. Return v.
16



Search engines for wrapper approach:

Best-first search

& More robust than hill climbing

& Select most promising node generated so far that

hasn’t been expanded

Table 6: The best-first search algorithm

. Put the initial state on the OPEN list,

CLOSED list «— @, BEST <« initial state.

. Let v = argmax f(w) (get the state from OPEN with maximal f(w)).

wEOPEN

. Remove v from OPEN, add v to CLOSED.

If f(v) —e> f(BEST), then BEST « w.

Expand v: apply all operators to v, giving v’s children.

. For each child not in the CLOSED or OPEN list, evaluate and add to the OPEN list.

. If BEST changed in the last & expansions, goto 2) “Stale SearCh”

Return BEST.
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Compound operators 1n
state space

& Topology of search space previously defined by

addition or deletion of a single feature at a time
& Search can be quite slow

& Compound operators combine several additions or
deletions into one operation

- Dynamically created after standard set of
children (single additions and deletions)
evaluated

& Search can advance faster

& Backward feature selection search now feasible
18



Compound operators 1n
state space: Example

0,1,1,1

Figure 14: The state space search with dotted arrows indicating compound operators. From the root’s

children, the nodes (0,1,0,0) and (0,0,1,0) had the highest evaluation values, followed by (0,0,0,1). -



Compound operators 1n
state space: Results

- Big improvement in backward search
& Nodes with good accuracy found faster

& Qverhitting also faster

real acc real acc

crx - backward soybean - forward
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Figure 15: Comparison of compound (dotted line) and non-compound (solid line) searches. The accuracy
(y-axis) 1s that of the best node (as determined by the algorithm) on an independent test set after a given
number of node evaluations (x-axis). The running time is proportional to the number of nodes evaluated. 20



Comparative results

Filter approach fairly erratic, sometimes degrades
classification performance

Wrapper approach more consistent, usually
improves performance

Best-first search generally better than hill chimbing
& Especially with ID3 induction algorithm

Backward best-first search with compound
operators reduces number of features by 19-40 %
on the average, depending on induction algorithm

More detailed results here, and in the paper
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Overhitting

~& Definition:

~® Tramning data
modeled too well

~& Predictions poor

~& Search engine guided
by accuracy estimates

~& Hstimates can be poor,
misleading

& Mainly a problem
when number of
instances small
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Figure 20: Overfitting in feature subset selection. The top graph shows the estimated and true accuracies
for a random dataset and 1D3. The solid line represents the estimated accuracy for a training set of 100
instances, the thick grey line for a training set of 500 instances, and the dotted line shows the real accuracy.
The bottom graphs graphs show the accuracy for real-world datasets. The solid line 1s the estimated accuracy,

and the dotted Line 1s the accuracy on an independent test set.
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Summary

Feature subset selection reviewed

Relevance of a feature, definitions

-+ Optimality for given task more important
Wrapper approach

& Search space

& Operators

& Search engine

~& Fvaluation function

On average, classification performance improved
with feature subset selection

Problems: overfitting, CPU time

26
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Relevance and optimality:
Examples

Example 2 (Relevance does not imply optimality) Let the universe of possible instances be {0,1}",
that 1s, three Boolean features, say X, X5, X3. Let the distribution of instances be uniform, and assume
the target concept is f( X1, X9, X3) = (X1 A X3) V X3. Under any reasonable definition of relevance, all
features are relevant to this target function.

If the hypothesis space 1s the space of monomials, i.e., conjunctions of literals, the only optimal feature
subset i1s { X3}. The accuracy of the monomial X3 is 87.5%, the highest accuracy achievable within this
hypothesis space. Adding another feature to the monomial will decrease the accuracy. |

Example 3 (Optimality does not imply relevance) Assume there exists a feature that always takes
the value one. Under all the definitions of relevance described above, this feature 1s irrelevant. Now consider
a limited Perceptron classifier (Rosenblatt 1958, Minsky & Papert 1988) that has an associated weight with
each feature and then classifies instances based upon whether the linear combination 1s greater than zero
(the threshold is fixed at zero). (Contrast this with a regular Perceptron that classifies instances depending
on whether the linear combination is greater than some threshold, not necessarily zero.) Given this extra
feature that 1s always set to one, the limited Perceptron is equivalent in representation power to the regular
Perceptron. However, removal of all irrelevant features would remove that crucial feature.

24
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Classification results

Table 16: A comparison of C4.5 with ID3-FSS, C4.5-FSS, and Naive-Bayes-FSS. The p-val columns indicates
the probability that the column before 1t 1s improving over C4.5

Dataset C4.5 ID3-FSS  p-val| C4.5-FSS p-val| NB-FSS p-val
original | Frwd-BFS Back-BFS Back-BFS

breast cancer 95.42+ 0.7| 94.57+ 0.7 0.11[95.286 0.6 0.41]96.00+ 0.6 0.81
cleve e e el i ST s i B 1 S A R o et | 8 T Mt e T O e o 5 11
CrXx 85.944+ 1.4| 85.22+ 1.6 0.31|85.80+ 1.3 0.46|84.78+ 0.8 0.15
DNA 92.66+ 0.8 94.27+ 0.7 0.99|94.444+ 0.7 0.99]96.12+ 0.6 1.00
horse-colic 85.05+ 1.2| 82.07+ 1.5 0.01|84. 77+ 1.3 0.41|82.33+£ 1.3 0.01
Pima =6 0= =0 08T 4==25 0 = (-0 R T OER = e ===05 20 <62 (31="1= 6099
sick-euthyroid 97.73+ 0.5 97.06+ 0.5 0.09|97.91+£ 0.4 0.66|97.354+ 0.5 0.21
soybean-large 91.35+ 1.6 91.65+ 1.0 0.59|91.93+ 1.3 0.65]94.29+ 0.9 0.99
Corral 81.254 3.5]100.00+ 0.0 1.00|81.254+ 3.5 0.50]90.62+ 2.6 1.00
m-of-n-3-7-10 85.56+ 1.1 | 77.34+ 1.3 0.00|85.16+ 1.1 0.36 |87.50+ 1.0 0.97
Monkl 75.69+ 2.1 97.22+ 0.8 1.00|88.89+ 1.5 1.00|72.22+ 2.2 0.05
Monk2-local  70.37+ 2.2| 95.604+ 1.0 1.00|88.43+ 1.5 1.00|67.13+ 2.3 0.07
Monk?2 1 D5 T i 0 01 s e G | O s s e A e A0 P O 3 s ] U
Monk3 QP2 08 =922 082050 |97 220K 2=0-5 0. "9F=2 2 +-0-8==0=50
Average real: 86.51 86.64 87.27 88.68

Average artif. 79.19 88.55 84.68 80.30
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