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Introduction

 In the article [1], feature selection used for 
classification

 Most results probably applicable to regression

 Goal: Select feature subset that maximizes 
classification performance on an unseen test set

 Different from choosing the relevant set of 
features!
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Feature subset selection
 Many machine algorithms degrade in performance 

when irrelevant features are present

 Correlated, relevant features may also be harmful

 Feature subset selection, a definition:

 Find a subset of features that maximizes 
accuracy of classifier

 No feature extraction or construction

 Feature selection not needed for Bayes classifier

 Practical algorithms face the bias–variance tradeoff
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Feature subset selection (2)

 Optimal feature subset defined with respect to the 
induction algorithm

 Optimal feature subset not necessarily unique

 Problem: Distribution of data not known

➡ Accuracy of classifier must be estimated from 
data
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Relevance of features
 Many definitions of relevance suggested:

6



Relevance of features (2)
 Let’s see how different definitions of relevance do 

in practice:
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 Intuitively, X1 is relevant
 Both X2 and X4 are relevant, but either one can be 

omitted
 Definitions of relevance fail miserably:



Relevance of features (3)
 Better definitions of relevance needed

 Strong relevance and weak relevance defined in 
terms of a Bayes classifier:

 In Example 1, X1 strongly relevant, X2 and X4 
weakly relevant, X3 and X5 irrelevant
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Relevance and optimality
 Bayes classifier uses:

 All strongly relevant features

 Possibly some weakly relevant features

 For practical classifiers:

 Relevance does not imply membership in 
optimal feature subset

 Irrelevance does not imply that a feature 
should not be in optimal feature subset

 Examples available, omitted here...
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Filter approach

 Feature selection done as a preprocessing step

 Drawback: Effect of feature selection on induction 
algorithm not known

 Algorithm called Relieved-F (based on Relief) 
used in comparisons

 Attempts to find all relevant features

subset selection
FeatureInput

features Algorithm
Induction
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Wrapper approach

Feature selection search
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Wrapper approach (2): 
state space search

 Each state represents a feature subsets
 State is boolean vector with

1 = feature present, 0 = feature absent
 Wrapper method searches state space trying to 

find best features
 “Black box” induction algorithm evaluates states
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Wrapper approach (3): 
connectedness of states
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Experimental setting:
Datasets
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 Two families of induction algorithms used in the 
paper
 (Induction algorithms build classifiers)

1. Decision tree algorithms
• C4.5, builds trees top-down and prunes them
• ID3, no pruning

2. Naive-Bayes

Experimental setting:
Induction algorithms

“Naive” 15



Search engines for wrapper approach: 
Hill-climbing search

 The simplest search technique

 Also called “greedy search” or “steepest ascent”

 Move to child with highest accuracy, terminate 
when no improvement
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 More robust than hill climbing

 Select most promising node generated so far that 
hasn’t been expanded

Search engines for wrapper approach: 
Best-first search

“Stale search”
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Compound operators in 
state space

 Topology of search space previously defined by 
addition or deletion of a single feature at a time
 Search can be quite slow

 Compound operators combine several additions or 
deletions into one operation
 Dynamically created after standard set of 

children (single additions and deletions) 
evaluated

 Search can advance faster
 Backward feature selection search now feasible
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Compound operators in 
state space: Example

Features
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Compound operators in 
state space: Results
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 Big improvement in backward search
 Nodes with good accuracy found faster
 Overfitting also faster
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Comparative results
 Filter approach fairly erratic, sometimes degrades 

classification performance
 Wrapper approach more consistent, usually 

improves performance
 Best-first search generally better than hill climbing

 Especially with ID3 induction algorithm
 Backward best-first search with compound 

operators reduces number of features by 19–40 % 
on the average, depending on induction algorithm

 More detailed results here, and in the paper
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Overfitting
 Definition:

 Training data 
modeled too well

 Predictions poor
 Search engine guided 

by accuracy estimates
 Estimates can be poor, 

misleading
 Mainly a problem 

when number of 
instances small
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Summary
 Feature subset selection reviewed
 Relevance of a feature, definitions

 Optimality for given task more important
 Wrapper approach

 Search space
 Operators
 Search engine
 Evaluation function

 On average, classification performance improved 
with feature subset selection

 Problems: overfitting, CPU time
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* Relevance and optimality:
Examples

subset selection
FeatureInput

features Algorithm
Induction

subset selection
FeatureInput

features Algorithm
Induction
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* Classification results

25


