Least angle regression

Antti Ajanki

antti.ajanki@hut.fi

Linear problems

- x_i are predictor variables and y_i is the response
- Find β_j which minimize squared error

$$\sum_{i} (y_i - \hat{\boldsymbol{\mu}}_i)^2$$

• where $\hat{\boldsymbol{\mu}}_i = \sum_j eta_j x_{ij}$

• Ordinary least squares: $\boldsymbol{\beta} = (\boldsymbol{X}\boldsymbol{X}^T)^{-1}\boldsymbol{X}^T\boldsymbol{y}$

Let's assume that y and all x_i are centered to zero and x_i have unit length

Forward selection

- Forward selection
 - Start with empty model
 - Select variable most correlated with output
 - Linear regression from the variable to y
 - Project other predictors orthogonally to the selected variable
 - Repeat
- Usually overly greedy
- Eliminates variables correlated with selected ones

LARS compared to other algorithms

- Least Angle Regression (LARS) "less greedy" than ordinary least squares
- Two quite different algorithms, Lasso and Stagewise, give similar results
- LARS tries to explain this
- Significantly faster than Lasso and Stagewise

Lasso

Lasso is a constrained version of OLS

$$\min \sum_{i} (y_i - \hat{\boldsymbol{\mu}}_i)^2$$

subject to $\sum_{j} |\beta_j| \le t$

Can be solved with quadratic optimization or with iterative techniques

Parsimonious: $\beta_j \neq 0$ only for some j

Increasing t selects more variables

Stagewise regression

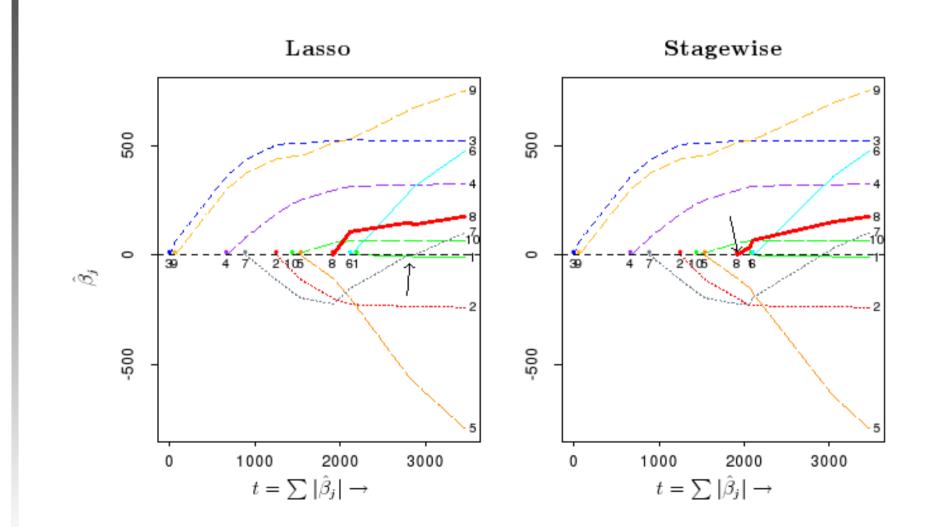
Forward stagewise linear regression

- Choose x_j with highest current correlation $c_j = x_j^T (y - \hat{\mu})$
- Take a small step $0 < \epsilon < |c_j|$ in the direction of selected x_j

$$\hat{\boldsymbol{\mu}} \leftarrow \hat{\boldsymbol{\mu}} + \epsilon \cdot \operatorname{sign}(c_j) \cdot \boldsymbol{x}_j$$

Repeat

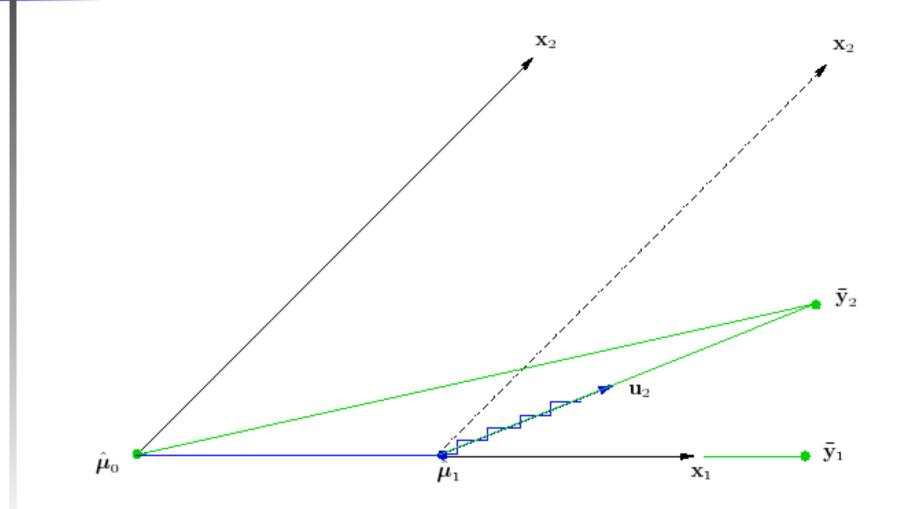
"Large" step size of |c_j| would lead to ordinary least squares


Non-linear extension

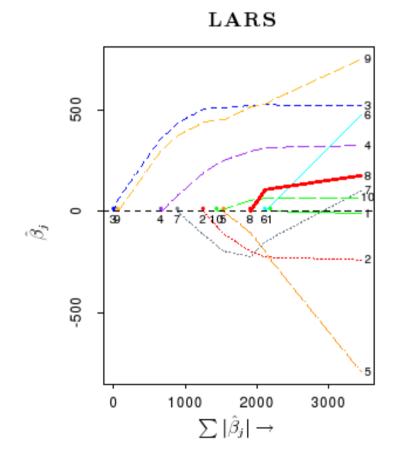
- Stagewise idea can be easily expanded non-linearly
- Boosting
 - Fit regression tree to residuals
 - Finds the most correlated tree
 - Take a small step in the direction of fitted values
 - Repeat

Diabetes data

- Main example in the paper
- $\blacksquare n = 442$ patients
- 10 variables: age, body mass index, blood pressure, serum measurements, ...
- Response variable is "a quantitative measure of disease progression one year later"
- Variable selection problem: which of the variables affect the disease


Comparsion of Lasso and Stagewise

- Least Angle Regression
 - Start with empty set
 - Select x_j that is most correlated with residuals $y \hat{\mu}$
 - Proceed in the direction of x_j until another variable x_k is equally correlated with residuals
 - Choose equiangular direction between x_j and x_k
 - Proceed until third variable enters the active set, etc
- Stan is always shorter than in OLS


Geometrical presentation

Computing LARS

- Every step a new variable enters the active set ⇒ no more steps than variables
- New dicrection can be solved with linear algebra
- Step length by iterating over all variables not in active set
- By cleverly updating estimates from previous iteration, the computation cost will be comparable to OLS

LARS results

Lasso modification

- LARS can be modified to give Lasso solution
- In the Lasso algorithm signs of the β_j and c_j must agree
- Take only as long LARS step as possible without changing the sign
- This works, if only one variable at a time enters the active set
- Unlike LARS, variables can be removed from active set

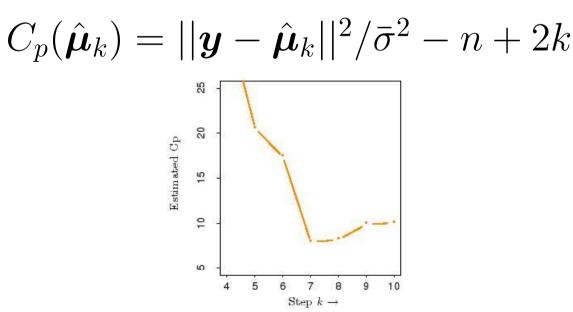
Stagewise modification

- The Stagewise step is positive combination of active set variables
- LARS has no sign restrictions on the direction vector
- Project LARS vector to positive convex cone
- This leads to Stagewise solution (assuming Stagewise step size $\rightarrow 0$)

Other modifications

LARS/OLS hybrid

Select the model with LARS, but the parameter values with OLS


Main effects first

- Run LARS until most important varibles are in the active set
- Restart with predictor variables replaced by interaction terms between already selected variables

Stopping criteria

When to stop?

• $C_p(\hat{\mu})$ is an unbiased estimator of $E\left(\frac{||\hat{\mu}-\mu||^2}{\sigma^2}\right)$ • Simple formula for C_p in the *k*th LARS step:

- Lasso and Stagewise can be seen as modifications of LARS
- This explains similar results
- LARS is more efficient to compute
- Other modifications