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Abstract
The presence of noise in the real world is a major

problem in the every day usage of speech recognition sys-
tems since it normally leads to a significant performance
decrease. The main problem is the mismatch between
training and operational data.

This paper tries to give an overview about the differ-
ent techniques and algorithms used to improve accuracy
for recognizing speech in a noisy environment. In prac-
tice ASR systems use a combination of several of this
methods to achive better recognition rates.

In general we can seperate the techniques into two
classes. The first one concentrates to on the compensa-
tion of noise during the preprocessing stage (feature map-
ping). This can be done by extracting features in a way
that the feaure vectors are not affected by the noise. The
other possibility is to actively reduce the noise by filtering
or transforming the data. The second class of techniques
tries to adapt the recognizer model to compensate the in-
fluence of noise. This paper briefly describes examples
for all mentioned classes of techniques.

1. Introduction

In the past a lot of speech recognition systems were de-
veloped. One of the main problems that prevents a wide
adoption of this technique in the everyday world is the
problem of noise. Although the recognition rates are al-
ready close to 100 percent for some laboratory experi-
ments the noise that can be present in the real world re-
sults in a major decrease of the recognition rate.

From a high level viewpoint the problem of noisy
speech recognition is the mismatch between training and
operating conditions. Figure1 shows how much better
the recognition rate is if the system was trained with noise
data. To describe this mismatch, Gong [2] introduces
the following transformationf : Let s be the model of
a recognition unit, e.g. a phoneme or word,e be an envi-
ronment, andqe(s) be some quantity defined ons in the
environmente. A transformationf is a mapping of quan-
tities between two environmentsα andβ to minimize the
mismatch.

qβ(s) = f(qα(s)) (1)

Figure 1: Word error rates for noisy and clean training
data (from [1])

The straight forward approach would be to transform
from the operating environment to the training environ-
ment (α = operating environment,β = training environ-
ment). Further discussion will be in section2. But also
the inverse transformation is possible and will be dis-
cussed in section3.

The general problem with noise (and with finding the
mentioned transformation function) is, that it is to a cer-
tain amount unpredictable. Car noise is different as noise
in an office both in spectral characteristic and in expected
loudness. In order to handle these different kinds of noise
some constraints are made. For example noise is consid-
ered to be additive to the speech signal. Furthermore a
lot of techniques to reduce the influence of noise are de-
veloped with the background that noise doesn’t change
as fast as the speech signals. To be able to compare
different approaches to handle noise there exists noise
databases (for example the NOISEX-92 database) with
example noise like Lynx Helicopter noise or Operation
Room noise.

One of the practical reasons noise is assumed to be
additive is the ease of producing noisy training data by
just adding noise to the clean speech.

Unfortunately there are additional effects that make
the problem of noisy speech recognition harder. Firstly
there is the so calledLombard effect[3]. It’s caused by
the fact, that humans articulation changes significant if
they speak in a noisy environment. Secondly Openshaw
and Mason [4] showed that additive gaussian noise results
in several changes of the statistics of the cepstrum.
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Figure 2: Speech recognition system

If we have a look at a speech recognition system as
shown in figure2 we can see two main modules. The
front-end which is responsible for the feature extraction
and the the recognizer. In order to gain noise robust
recognition we can improve each of those two parts.

• Preprocess the data in such a way that the results
looks like clean speech to the recognizer. This is
also called “speech enhancement”

• Adapt the HMMs to match the noisy speech data.
This can be done by switching to a HMM trained
under the current kind of noise, by combining a
clean speech model with a noise model to get a new
HMM or by adapting parameters of the HMM.

• Combine both methods. Use preprocessing to de-
crease the SNR and adapt the HMM.

This paper [5] compares this three techniques for rec-
ognizing continuous speech in the presence of additive
car noise.

2. Noise robust feature extraction

The aim of noise robust feature extraction is to deliver
acoustic vectors to recognizer that are as close as possi-
ble to the training data. Close means that the distribu-
tion of the parameters is similar. Obviously impulsive
noise results in a different distribution. But not only im-
pulsive noise is a problem. As already mentioned, Open-
shaw and Mason [4] showed that also additive white noise
also significantly alters the distribution. The mean shifts,
the variance is reduced and the distribution becomes non-
gaussian.

In principle there are two main possibilities to look at
the problem of robust feature extraction:

• Detect the noise and transform the feature vectors
into the training environment. (speech enhance-
ment)

• Find a feature extraction method that gives the
same results with and without noise. (noise resis-
tant features)

The following sections will describe some example
methods for robust feature extraction.
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Figure 3: Input-output relation betweenX(ejω) and
Ŝ(ejω), [6]

2.1. Spectral subtraction

Spectral subtraction is a quite old speech enhancement
method, introduced by Boll in 1979 [6]. The main advan-
tage of this method is, that it’s simple to understand and
implement and computationally efficient.

Spectral subtraction uses an additive noise model.
Furthermore noise and speech are assumed to be inde-
pendent. The noisy speech signalx(k) is the sum of the
speech signals(k) and the noise signaln(k)1. This sim-
ple addition stays also after the Fourier transformation:

X(ejω) = S(ejω) + N(ejω) (2)

Since the noise level isn’t exactly stationary the av-
erageµ(ejω) of the magnitude|N((ejω)|, taken during
non-speech activity, is used. With this average and the
phaseθx(ejω) of X(ejω) it is possible to calculate the
spectral subtraction estimator̂S(ejω).

Ŝ(ejω) = (|X(ejω)| − µ(ejω))ejθx(ejω) (3)

Equation3 (figure3should clarify it) can also be writ-
ten as

Ŝ((ejω) = H(ejω)X(ejω) (4)

where the filterH(ejω) can be calculated as

H(ejω) = 1− µ(ejω)
|X(ejω)|

(5)

The main problem is that the noise has to be station-
ary or only slowly varying (µ(ejω) can be adapted). Fur-
thermore the decision, if there is speech or only noise,
is really critical since mistakes would results in a major
performance decrease.

1This linear connection isn’t valid any more in the logarithmic spec-
trum domain



2.2. Minimum mean square error (MMSE) short-
time spectral amplitude (STSA) estimator

This speech enhancement method was introduced in the
year 1984 [7]. Like spectral subtraction the goal is to es-
timate the amplitude of the the clean speech signal given
noisy speech data. This technique makes it possible to
calculate theoptimal spectral amplitudeestimator in the
ML sense whereas spectral subtraction STSA estimation
is derived from optimal variance estimation.

The used model is once again additive noise in the
time domain. The observed signaly(t) is the sum of the
speech signalx(t) and the noise signald(t). Let Xk and
Yk denote thekth complex DFT coefficient ofx(t) and
y(t).

Xk = Ak ejαk (6)

The MMSE estimatorÂk of Ak can be calculated like
this:

Âk = E{Ak | y(t), 0 ≤ t ≤ T}
= E{Ak | Yk}

(7)

The final result for the amplitude estimator is
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whereνk andγk can be calculated out of the variances
λx(k) and λd(k) of the kth spectral component of the
speech and the noise.

2.3. Parameter mapping

Another speech enhancement method is parameter map-
ping. The goal is to map noisy speech observations into
clean speech vectors with some kind of transformation.
If it’s possible to find such a transformation, like already
introduced in equation1, the accuracy of the ASR would
be like without noise. Since we don’t know this per-
fect transformation a number of approximated transfor-
mations were developed.

One example is a transformation that minimizes the
square error. This prinzip is very easy and described for
example in [8]. Let X andY be the clean and noisy fea-
ture vectors. A linear transformation could be definded
with a matrixA and a vectorB.

Y ≈ A ·X + B = Y ′ (9)

The minimum square errorE would be |Y − Y ′|2.
With a given set of corresponding clean and noisy vectors
the matrixA and the vectorB can be calculated with the
Linea Multiple Regressionalgorithm.

Figure 4: Frequency response of RASTA band-pass filter
(from [9])

A different approach to do this transformation which
gives better results would be to use an ANN. ANNs can
be used for much more complex than just linear transfor-
mations. Sorensen investigated the usage of a multi-layer
feedforward neural network model in his work [11].A
major problem with this approach is that it is quite hard
to train the network since clean speech and corresponding
noisy noisey speech vectors are necessary.

2.4. RASTA processing

The relative spectral (RASTA) processing technique is an
other example for a method to filter out noise and aims at
noise resistant feature extraction. It is based on some ba-
sic characteristics of the human vocal tract and the human
perception.

Linguistic messages are transformed into sound by
movements of the vocal tract. Due to the physical charac-
teristics of this vocal tract there are typical rates of change
in the speech signal. The goal of RASTA processing,
as described by Hermansky [9], is to suppress the spec-
tral components that change more slowly or more quickly
than the typical rate of change of speech.

Hermansky cites in this paper also early experiments
that indicate the biggest sensitivity of human hearing at
modulation frequencies around 4 Hz2 It turns out that
linguistic information is mainly modulated at frequencies
between 1 Hz and 12 Hz.

Another motivaion for supressing slow varying audio
data is the fact that steady background noise (e.g. in a
cafeteria) doesn’t serverly impair human speech commu-
nication. It looks like the human audio perception doesn’t
care much about slow varying audio data.

To simulate this in RASTA processing each frequency
channel is filtered with a band-pass filter like in figure4

2[10] is a more general paper that concentrates on the fundamental
princips of human perception and how this knowledge can be used to
build better ASR systems.



which filters unusual low and high modulation frequen-
cies. The transfer function for this filter is3

H(z) = 0.1z4 ∗ 2 + z−1 − z−3 − 2z−4

1− 0.98z−1
(10)

RASTA processing is quite often combined with the
PLP method which leads to the name RASTA-PLP. The
first step of RASTA-PLP is to compute the critical-band
power spectrum as in PLP. After that a compressing trans-
formation is performed and the time trajectory of each
spectral component is filtered. The next step is a exand-
ing transformation and after that the conventional PLP
processing resumes.

Note that there are different kinds of RASTA process-
ing (e.g. J-RASTA) to handle both additive and convolu-
tional noise.

2.5. Cepstrum mean normalization (CMN)

This technique is somehow similiar to RASTA process-
ing since it also aims at the removal of slow variations.
This is done by removing the long term mean from the
the cepstral vectors [12]. Since this subtraction is done
in the log-domain it reduces multiplicative disturbtions.
Therefor it improves recognition accuracy for new chan-
nels (e.g. a different microphone).

An improvement of this classical CMN technique
is exact cepstrum mean normalization(E-CMN) as de-
scribed by Shozakai et al. [13]. It consists of two steps.

1. Estimation step: Two cepstrum mean vectors are
calculated. One during speech which is speaker-
dependent and the second one during periods with-
out speech which is environment-dependent.

2. Normalization step: During speech the speaker-
dependent vector is subtracted from the in-
put speech frame and during non-speech the
environment-dependent vector is used.

E-CMN results in a 2–3% improvement in the recog-
nition word accuracy compared to CMN.

Since it is not possible to calculate the mean cepstrum
vectors in advance for real-time application a running av-
erage is used if necessary.

3. Model compensation

Instead of trying to filter out the noise we can try to recog-
nize speech although the data is polluted with noise. The
possibility to train HMM with noisy data has the practical
problem that the computational effort is rather high. Cur-
rent techniques focus on training with clean speech and
somehow adapting the recognizer.

3This filter is just an example used in [9] which was a bit improved
later in this paper
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Figure 5: Decomposition of 3-dimensional state-
sequence into two 2-dimensional projections in the noise
and the speech state spaces; [14]

3.1. Parallel model combination

The basic idea of goes back to the work of Varga and
Moore [14]. They proposed a general method of decom-
posing simultaneous processes that can be used in the
problem of recognition contaminated with noise. This
is done by using parallel hidden Markov models. One
model for each of the components into which the signal is
to be decomposed. An advantage of this technique is that
in theory it’s possible to use quite complex noise models
to compensate also non stationary noise.

Figure5 shows how this decomposition can be done
for a signal consisting of speech and noise. We can see
two 2-dimensional projections that shows the state of
both the noise and the speech model (M1 andM2) for
each observation. In general the probability of an obser-
vation can now be evaluated like this (⊗ is some kind of
combination operator):

Observation Prob.= P (Observation| M1 ⊗M2) (11)

To find the most likely state sequence in a single
HMM the Viterbi algorithm (equation12) is used

Pt(i) = maxPt−1(u)au,ibi(Ot) (12)

This algorithm can be adapted as in equation13 to
find the most likely sequence for a combination of two
HMMs.

Pt(i, j) = maxPt−1(u, v)a1u,ia2v,jb1i⊗b2j(Ot) (13)

Pt(i, j) is the probability of the first component be-
ing in statei and the second in statej at timet. a1 and
a2 are transition probabilities andb1i ⊗ b2j(Ot) is the
observation probability.
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Figure 6: Creation of an adjusted model, [17]

Experiments showed (e.g. Gales and Young [15]) that
with the usage of parallel model combination a perfor-
mance level similar to training directly in the noise cor-
rupted environment, can be achieved.

3.2. Model adaption

This techniques use a certain amount of test data to adapt
the HMM model parameters to the noise environment.
An overview is shown in Figure6. In practice incremen-
tal adaption is used which means that the adaption data
becomes available when the system is used.

A lot of research work in this area comes not from
the problem of noise but from the problem of adapting
speaker independent models into speaker adapted mod-
els. Proposed solutions for that can also be used for
adapting models due to noise. This adaption can be done
by a linear transformation. Gales compared in this paper
[16] two possible forms of model based linear transfor-
mations. The basic equations look similar for both cases:

µ̂ = Aµ + b (14)

Σ̂ = HΣHT (15)

whereµ is the mean vector andΣ the covariance ma-
trix. The difference between the compared methods is
that one requires the variance transform to have the same
form as the mean transform (A = H). This is a bit simpler
and is described in detail in [18].

3.3. Noisy training data

In theory we would reach the highest recognition rates
if the HMMs were trained under the same environment
as the operational environment. In most cases this isn’t
practicable since it’s hard to predict the noise and also
the rest of the environment (e.g. used microphone). The
second problem is the huge computational effort for train-
ing under all or at least most of the predicted operational
conditions.

As a matter of fact this method for noise robust speech
recognition is only suited for an environment that is quite
restricted in terms of different kinds of noise. A car could
be such an environment. Car manufacturers could use a
defined microphone and the current speed and rotations
per minute to choose the best matching HMM.

Recognition rates of systems trained with noisy train-
ing data are often used as benchmark for other noise ro-
bust speech recognizers.

3.4. Other approaches

Beside the few examples for quite classical methods for
model compensation given in this paper there a plenty
of others. Some would fit to a certain amount into the
described categories some won’t.

An interesting and recent approach is described in this
paper [20] by Khan and Levinson. They use multiple
HMMs (in general only 2 to reduce cost) the learn mul-
tiple views of the same input sequence. The advantage
is that no adaption or training with noise takes place and
hence no noise data is needed. The method is compared
to view at asolid object from multiple angles.

Let Xf be a (forward) input sequence of speech fea-
tures:

Xf = x1, x2, . . . xn−1, xn (16)

In order to get those multiple views the train the dif-
ferent the HMMs with different permutations of this input
sequence. For example withXf and the reverse sequence
Xr which would be

xr = xn, xn−1, . . . x2, x1 (17)

For recognition the input sequence and all permuta-
tions are evaluated with their according HMM. The out-
put of all HMMs are evaluated based on the previous
recognition trend, confidence factors, similarity, etc.

4. Conclusions

Although there was already done a huge amount of re-
search effort the problem of noise in speech recognition
is still not solved. The best results that are possible in
practice come from a combination of several techniques.
This starts with a suited microphone, a noise robust fea-
ture extraction, speech enhancement and model compen-
sation. But even such a combinded method doesn’t reach
the recognition rates achieved with systems trained under
the noisy conditions.

Another problem is that while some speech enhance-
ment techniques are able to produce a speech signal that
looks better on the spectrogram it isn’t guaranteed that it
really helps to improve the recognition accuracy.

If we don’t combine methods but look a them seper-
atly, it’s easier to obtain improved accuracy with some
kind of transformation based techniques if the statisti-
cal properties of the noise are known. On the other
side, with varying SNR noise robust feature extraction
becomes more important.

Luckely the needed computational effort (which ex-
istst especially for model compensation) isn’t a big prob-



lem any more due to modern DSPs in embedded systems
or powerful PCs.

Another hope for better results is still the human au-
ditory system. Humans are very good at filtering speech
from noise. This is of course a result of the huge amount
of reduntant information in natural languages and the
context. But even if a person doesn’t speak the spoken
language and therefore doesn’t understand a single word
it is quite obvious for her which part of the audio signal
belongs to speech and which is noise. As a matter of fact
it looks like it is possible to distinguish sounds coming
from the human vocal tract from noise even if there is no
further information available.
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