
An Implementation of a Token Pass Decoder

Janne Pylkkönen

Laboratory of Computer and Information Science
Helsinki University of Technology, Finland

janne.pylkkonen@hut.fi

Abstract
The concept of token passing for speech recognition was
introduced over 15 years ago. The most popular de-
coding technique for large vocabulary continuous speech
recognition (LVCSR) nowadays is the one-pass time-
synchronous beam search strategy, which is still based
on that same principle. The key advantage of token pass-
ing is the conceptually simple approach, which makes it
possible to extend the strategy to handle many advanced
problems in speech recognition, such as cross-word con-
texts and early language model pruning.

The goal of this project was to implement a token
pass decoder to the existing CIS-HUT LVCSR frame-
work. The key design issues were to have a rather sim-
ple decoder based on lexical prefix tree and beam search,
which could be extended and modified along time de-
pending on research needs. To have the decoder per-
form well enough, it was necessary to implement lan-
guage model lookahead. The performance of the decoder
was compared against the existing stack decoder, show-
ing that the new decoder performs almost equally well.
The advantage with the new decoder is its simple struc-
ture and architecture, which allows it to be extended so
that its performance could be made to somewhat equate
to those of the state-of-the-art decoders.

1. Introduction

A decoder is the part of the speech recognizer which does
the actual recognition, that is, finds the word sequence
which best matches the input signal. This operation can
be described with a simple equation (see [1]):

Ŵ = argmax
W

{P (O |W )P (W )}, (1)

where O is the acoustic observations and W is a sequence
of words.

The naive approach, according to (1), is therefore to
try all combinations of words in the vocabulary. It is
easy to show that this becomes very quickly infeasible.
Assume we have a relatively small vocabulary of 10000
words. Further suppose we have a fast computer which
can evaluate 107 word combinations in a second. Even
with these restrictions, decoding a four-word sentence

would require evaluating 1016 word combinations, which
would then take 109 seconds, or about 31.7 years!

From this kind of consideration it is clear that the
main difficulty which a decoder has to face is how to re-
duce the search space so that the decoding task becomes
feasible. Fortunately there are several powerful design
principles which allow us to do decoding with even larger
vocabularies and slower machines than was assumed in
the previous example, and still achieve near real-time per-
formance. The speed up does not come without a cost, so
another issue is the decoding accuracy. With good design,
these both can be combined fairly well.

2. Decoder designs

2.1. Different approaches

In [1] Aubert classifies different decoding methods to
three broad classes. The first class is a static network,
which includes all the knowledge sources (acoustic and
language models) in the same search network. The most
popular approach using this design is the weighted finite
state transducer (WFST) method.

The other two classes are based on a dynamically ex-
panded search network, in which the knowledge sources
are not statically combined. Usually this means building
a static lexical network, and explicitly handling the lan-
guage model during the search. The difference between
the two classes using this approach is whether the search
proceeds in a time-synchronous or asynchronous manner.
The former can be further divided to re-entrant tree and
start-synchronous tree approaches.

All of these decoder designs still share some mutual
characteristics, which allow them to reduce the search
space to feasible extents. One is the use of redundan-
cies in the knowledge sources. WFST method can reduce
the search network to surprisingly compact format by
utilizing redundancies in language models, lexicon and
acoustic models. The approaches based on dynamically
expanded network usually only concentrate on the latter
two. By building the search network as a lexical prefix
tree, the words sharing the same beginning can be com-
bined together, reducing the search effort by almost an
order of magnitude [2].



Another common characteristic between the decoder
architectures is the search strategy. Even with a compact
search network it is not possible to search through all the
paths. Instead, only the most promising paths are kept
active, resulting in a so called beam search strategy. The
most common method of implementing this is the token
pass algorithm [3].

2.2. The selected architecture

Of all the designs described in the previous section, the
most popular appears to be the dynamically expanded
time-synchronous search based on a re-entrant lexical
tree (see e.g. [4]). It’s popularity is probably due to con-
ceptual simplicity and the possibility to address several
advanced problems, such as early language model prun-
ing and the utilization of cross-word triphone contexts.

This same design was also selected as the architecture
for the decoder in this project. As the decoder is mainly
aimed for research purposes, the simplicity and easy ex-
tendibility are important issues. The actual search is done
as a beam search based on token passing, which has been
proved to be an efficient decoding paradigm.

The large vocabulary continuous speech recognition
(LVCSR) framework used at the laboratory of computer
and information science of Helsinki university of technol-
ogy has previously included a stack decoder, which used
start-synchronous search based on time-synchronous lex-
ical trees. This can be considered as the baseline for the
new decoder, so that there is something to compare the
performance to. However, it must be noted that in such a
short time period this project was completed, it is difficult
to optimize all the parameters of the decoder. Therefore
the performance of the new decoder may not be quite the
optimal, whereas the parameters of the stack decoder has
been optimized for years for best performance.

One of the reasons for implementing a new decoder
is the restrictions implied by the architecture of the stack
decoder. One example is the possibility to use cross-word
triphone contexts, a feature which could not be imple-
mented to the stack decoder but which is a feasible ex-
tension to a basic token pass decoder. The possibility to
implement this feature was considered during the project,
but the actual implementation was not made.

3. Project objectives

To restate the project’s main objective, this work involved
implementing a token pass decoder to the LVCSR frame-
work used at the laboratory of computer and informa-
tion science of HUT. The goal was to have a flexible
decoder, which can be easily extended and used for re-
search purposes. The chosen architecture for the decoder
was the time-synchronous search based on a re-entrant
lexical tree, implemented as a token pass beam search.
If properly tweaked, it should be able to perform com-

paratively to the state-of-the-art decoders. This was not
yet achieved, although one technique which can be con-
sidered as advanced, namely the language model looka-
head, was already implemented to the decoder during the
project.

For the new token pass decoder, some of the code
from the stack decoder already included in the LVCSR
framework could be reused. However, all parts specific to
the token pass decoding, namely the construction of the
lexical prefix tree and the actual token pass beam search,
had to be made from scratch. The performance of the
token pass decoder was tested against the existing stack
decoder.

When the project objectives were first defined, it was
stated that the basic implementation of decoder was the
primary goal. Two specific extensions was given as op-
tional features which were considered during the project.
Only one of these, language model lookahead, was im-
plemented. However, the architecture of the decoder is
such that it does not restrict the implementation of the
other extension, the cross-word triphone contexts. Due to
time constraint, it was not implemented as a part of this
project, but was left as a possible future improvement.

Next, some of the implementational issues are con-
sidered in more detail.

4. Lexical prefix tree

Lexical prefix tree means that the lexicon is constructed
as a tree, where the words share their common begin-
nings. This greatly decreases the number of tree nodes
required. Comparing to the usual approach of sharing
only those triphones which have been completely tied to-
gether, that is, have identical HMM states, a slightly more
general approach was taken. It is possible, for example,
to have two triphones which only differ in their last HMM
state. In these kind of cases, the first states of the tri-
phones can still be shared. Hence, the tree construction
is based on HMM states rather than triphones. This ap-
proach is convenient also because now it is not necessary
to explicitly tie triphones with identical HMM states, as
the triphones are defined only with means of the HMM
states.

The procedure of tree construction is as follows. The
words are added to the tree one after another. The tri-
phone list of the word is expanded to the list of HMM
states, and the tree is traversed according to this list.
Once a node is found from which a branch to the next
state doesn’t exist, a new branch to a new node is cre-
ated. Some additional processing is also performed to
allow different HMM topologies. The tree construction
requires the HMMs to have only left-to-right transitions,
but it allows multiple transitions and skip states to ex-
ist. To the word end a dummy node is inserted, which
includes the word ID and an arc to the beginning of the
tree, but it does no have any HMM state associated with



it. In decoding, these kind of nodes are passed immedi-
ately, they do not consume an observation frame.

5. Beam search

The basic unit of the search is a token, which incorpo-
rates knowledge about current likelihood (both acoustic
and language model), search position in the lexical tree
and the word history of the speech recognized so far.
At each frame every active token is propagated, which
means moving them with each transition available at their
current position. While propagating the tokens, a beam
pruning is applied. This means that the likelihood of a
token must be within defined limit compared to the best
performing token at each frame. If this is not true, the
token is pruned. Also the number of tokens is controlled
so that if it exceeds a defined maximum level, the worst
tokens are pruned away to meet the maximum limit. The
former pruning is so called beam pruning, the latter is
histogram pruning.

Two different beam limits have been defined. The
other is the global beam, which is applied to every to-
ken. It is important to note that the sooner the pruning
is applied, the more effective it is. That is why the beam
pruning is applied already while propagating the tokens,
even though the best token is not yet known. The pruning
is then done using the best token likelihood encountered
so far, and after all the tokens have been propagated, an-
other pruning round is performed.

Another beam value is reserved for the word ends.
This is important, because from word end position a to-
ken is propagated back to the root of the lexical prefix
tree, the position which contains the most branches and
is therefore the most costly to have a token in. The word
end beam is compared to the best token in word end po-
sition, and the beam value is kept much lower than the
global beam (about a half of it).

To have a little more performance, histogram pruning
is avoided by adaptively lowering the beam limits if there
were more tokens than the defined maximum number. If
after that the maximum number of tokens is not met, the
beam limits are gradually increased to their real values.

6. Language model

6.1. Morph language model

The main target language of the decoder was Finnish.
Finnish is a highly inflectional language, which poses
some problems to speech recognition as it is not possi-
ble to list all the possible words. To overcome this prob-
lem, the recognition is done in means of sub-word units
instead of words. In the CIS-HUT LVCSR system units
called morphs are used. These are morpheme-like units
which have been found in an unsupervised manner from
a large corpus.

The benefit of a morph language model is that the

number of units can be quite low. The lexicon recently
used for decoding contains about 26000 morphs. On the
other hand, the language model order may need to be
higher than the usual three to achieve the same level of
language knowledge. The decoder must then be able to
cope also with higher order language models, and the cur-
rent implementation indeed does not restrict that order.

One further issue for the decoder which has to be ad-
dressed when using a sub-word language model is the ex-
plicit inclusion of word boundaries. As the basic recogni-
tion unit is shorter than a word, there is no word bound-
ary between all the units, but they have to be explicitly
inserted. Unlike for the sub-word units, there may not
be acoustical evidence (that is, silence) for these word
boundaries, so they must have special treatment. This is
currently handled by simply making two different path
histories for tokens in word end nodes. For the other just
the word is appended to the word history, for the other
also the word boundary is appended. These word histo-
ries are assigned to different tokens, so they both con-
tinue propagating until one or both of them are pruned. It
should be noted that at the point of this word boundary
insertion, the only difference between these two tokens is
in their language model score.

6.2. Language model lookahead

In its basic form, the token pass decoder achieved sim-
ilar accuracy as the stack decoder, but was somewhat
slower (about 1.5 times). To improve the performance,
a technique called language model lookahead was imple-
mented. At first, the method described in [5] was taken
as the reference, but for the current implementation it was
further simplified.

Language model lookahead means that the language
model score is taken into account as early as possible.
This is a problem with lexical prefix trees, where the
word identity is only known at the final nodes of the tree.
However, already early in the tree, the number of dif-
ferent word alternatives becomes quite small. The idea
in the language model lookahead is then to compute the
language model scores of these alternatives, and use the
maximum of these as an estimate for the final language
model score. This makes it possible to prune the tokens
earlier.

Language model lookahead requires lots of compu-
tation, and therefore its implementation is crucial to the
performance. The first approximation which was made
is that the early language model scores are computed as
bigram scores. This speeds up the computation and also
reduces the number of different contexts, so that more to-
kens will be able to use the same lookahead scores. An-
other simplification, unlike done in [5], is that the looka-
head scores are only computed after the first branch from
the lexicon tree root, not in further nodes.

To avoid computing same language model scores



Table 1: Comparison of the two decoders.

Decoder Word error Phoneme error RT factor
Stack 15.5% 2.58% 4.3
Token pass 15.8% 2.74% 3.4

again and again, a two level cache for the scores was
implemented. The first level contains the actual scores
for recent contexts, of which 500 was noted to be quite
enough. This was done with a hash technique, so that the
correct score table is found quickly. In addition, a queue
was implemented on top of the hash, so that it is possi-
ble to remove the least referenced item from the cache.
Another cache was implemented to the tree node level,
which included the maximum language model score for
different contexts for that particular sub-tree. This was
implemented as a simple hash, so that a colliding item
replaces the previous one.

7. Decoder evaluation

The new token pass decoder and the old stack decoder
were compared in a speech recognition test. As both of
these decoders were implemented in the same framework,
it was easy to run the tests with the same settings, namely
the same acoustic and language models.

The evaluation task was a speaker dependent LVCSR
task. Preliminary testing and parameter optimization
(beam parameters and the scaling of transitions, duration
models and language model) was done with a separate
19-minute development set of the same material. The
length of the actual evaluation set was 27 minutes.

As a language model, a morph lexicon of 26000
morphs was used with a 4-gram language model. Acous-
tic models were tied triphone HMMs, with 4094 states,
each having a GMM of 8 Gaussians. These models were
trained from a training set of about 12 hours.

The decoder pruning settings were adjusted so that
the decoders performed about as accurately as possible.
The parameters of the token pass search were as follows:
maximum number of tokens: 30000, global beam: 240,
word end beam: 120, language model scaling: 28, dura-
tion model scaling: 4.

The results of the evaluation are shown in Table 1. It
can be seen that the accuracy of both decoders is almost
the same, the token pass decoder had a phoneme error
rate 6% worse than the stack decoder. However, its real
time factor was 20% smaller. But to be fair, the stack de-
coder suffered some speed lost due to tied triphone states,
which it wasn’t designed to handle well.

8. Conclusions

During this project, a token pass decoder was imple-
mented to the CIS-HUT LVCSR framework. After ex-
tending the basic implementation with language model
lookahead technique, it achieved almost the same accu-
racy as the stack decoder, but with 20% decrease in de-
coding time. With the current implementation the token
pass decoder did not add any modeling capabilities com-
pared to the stack decoder, so no accuracy gain was even
expected.

The performance of the implemented token pass de-
coder shows that the time synchronous beam search is an
efficient search strategy for decoding and the current im-
plementation is reasonable. Due to its simple design, the
token pass decoder should be more flexible for future im-
provements than the existing stack decoder. One such ex-
tension is the capability to handle cross-word triphones,
something that is almost impossible to be implemented to
a stack decoder.

9. References

[1] Aubert, X. L., “An overview of decoding techniques
for large vocabulary continuous speech recogni-
tion”, Computer Speech and Language, 16(2): 89–
114, 2002.

[2] Ney, H., Haeb-Umbach, R., Tran, B.-H., Oerder,
M., “Improvements in beam search for 10000-word
continuous speech recognition”, Proc. ICASSP,
1992, pp. 9–12.

[3] Young, S. J., Russell, N. H., Thornton, J. H. S.,
“Token passing: a simple conceptual model for
connected speech recognition system”, Tech. Re-
port, Cambridge University Engineering Depart-
ment, 1989.

[4] Aubert, X. L., “One pass cross word decoding for
large vocabularies based on a lexical tree search or-
ganization”, Proc. EUROSPEECH, 1999, pp. 1559–
1562.

[5] Ortmanns, S., Eiden, A., Ney, H., “Improved lexi-
cal tree search for large vocabulary speech recogni-
tion”, Proc. ICASSP, 1998, pp. 817–820.


