
Implementation and optimization of a music recognizer based on Gaussian
Mixture Models

Pedro Dı́az (53452F)

Helsinki University of Technology
pdiaz@cc.hut.fi

Abstract

This paper describes the implementation of a music rec-
ognizer based on Gaussian Mixture Models. This rec-
ognizer implements most of the ideas outlined on my
midterm paper, although due to lack of time some of
them are not implemented completely. The performance
of the implementation is quite good but there is still a lot
of space for further improvements. The most promising
improvements are outlined in section 4 of this document.

1. Review of project goals and objectives

The project’s main objective was to build a music recog-
nizer within a client-server architecture and with special
emphasis on query optimization. This goal was met, al-
though due to the lack of time to complete the project,
some planned features are still incomplete or not even
implemented. The following sections describe how the
system was implemented.

2. Project implementation

2.1. Software description

The project software comprises several specialized com-
mand line utilities, written in Python and C. Python was
used on the utilities that required heavy string processing
or database access and little computation. C was used to
implement the computationally heavy part of the project
(GMM training and testing). The following list describe
the role of each utility on the system :

• songfeats.py: This is a python script that ex-
tracts the features of a given song file. It uses the
program sox for converting the song file to a raw
16Khz, 16bit PCM format. After this the fea pro-
gram (included with the SONIC toolkit) is used to
do the actual work and extract the song features.
The extracted features are stored in a file with ex-
tension .fea

• trainGMM: This is a C program that reads a fea-
tures file (.fea) and trains a Gaussian Mixture
Model with the observation vectors of the features
file. The user can specify how many components to

use as well as how many iterations to perform. The
output of this program consists of a binary dump
of the GMM parameters (weights vector, mean and
covariance matrices). The filename extension for
the output of this parameters is .params. Each
features vector is composed of 13 values: 12 from
the MFCC and 1 for the energy. No Delta or Delta-
Delta values are used.

• newauthor.py: This python script takes a
.params file and an author name and inserts this
information in the Database. It returns an author
ID (positive integer, unique for all the authors).

• newsong.py: This python script takes a
.params file, an author ID and a title, and inserts
this information in the database.

• queryGMM: This program takes a .fea file and
queries the song database for the song informa-
tion. Several search methods (explained later on
this document) and optimizations are available to
the user

2.2. Optimization techniques used

Since implementing an efficient recognizer was one of the
main objectives of the project, the topic of implemented
optimization techniques deserves a subsection on its own.
All the optimizations implemented fall under one of these
two categories:

• Database organization: Techniques to improve
the search performance by somehow organizing the
contents of the database.

• Log-probability computation optimizations:
Optimizations done to calculate the log-probability
of a set of feature vectors against a GMM

2.2.1. Hierarchical organization of the database

The most important optimization regarding database or-
ganization is the hierarchical organization of the songs
in the database. This technique consists on arranging the



songs hierarchically so that each parent is a GMM that
models all the songs that are its childs in the hierarchy.

On the implementation a simple two-level hierarchy
is used: songs are grouped by its author. Further improve-
ments on this aspect would be to extend this hierarchy to
more levels.

2.2.2. Log-probability computation optimizations

As stated in my midterm paper about the project, the cal-
culation of the log-probability can be optimized a lot pre-
computing some values. The software implementation
provides three versions of the log-probability procedure:

• A “verbatim” version, where the formula is imple-
mented without any kind of optimization or pre-
computation.

• An optimized version, which implements the same
function as the “verbatim” version (i.e.: both ver-
sions are mathematically equivalent) but uses all
kind of tricks and optimizations in order to improve
performance.

• A nearest neighbor version, which implements a
Nearest Neighbor search across all the compo-
nents. Since some simplification and assumptions
are made, this version is not mathematically equiv-
alent to the above two. It can be seen as a quick
estimate of the log-prob value.

3. Experiments performed and software
review

This section describes the experiments performed once
the project implementation was done. These experiments
are not meant to be an exhaustive performance bench-
mark of the system, since I had not enough time or re-
sources to build a suitable song database.

3.1. System setup

A set of about 800 songs was processed. Each song
was modeled with an 30-component GMM, which was
trained for 10 iterations. Each artist was modeled with
a 80-component GMM, which was also trained with 10
iterations.

Since training a GMM is the most computationally
expensive procedure of the system, the features of each
song were filtered with a 1:15 ratio. This means that only
1 of each 15 feature vectors was actually used for training
the GMM. This filtering method was empirically proved
sufficient to let the GMM “capture” the sound of the song.

3.2. First tests

The first tests done showed that the system performs quite
decently regarding accuracy and speed. Most of the songs

Figure 1: Performance of several log-probability function
versions

1 got recognized correctly, and, due to the optimizations
and use of a compiled language, the speed was very high
compared with the program used in homework #3 of the
course (speaker identification). Although the first impres-
sion was positive, two problems with the current imple-
mentation began to become clear:

• A two-level hierarchical database is not enough,
even with such small song database. While
much faster than just a linear search, hierarchical
searches for long songs could take as long as 10
seconds.

• One of the foundations about nearest neighbor
search is the tradeoff of accuracy for more speed.
This approach seemed to work well while search-
ing within a set of song GMMs, but failed more
than the other methods while trying to determine
the author of the song. This is probably due to
the fact that author GMMs model a much wider
“sound concept”, and therefore probably more than
one component of the GMM is important for com-
puting the final log-probability.

3.3. A small query performance benchmark

Figure 1 shows search time for a song query. The song
used to do the query is specially large, 60 minutes and 2
seconds.

Several versions of the log-probability function are
tested. From left to right:

1About 99% with a normal log-likehood computation and around
95% if using a nearest neighbor search, but this figures must be taken
with a grain of salt since the song database is too small



• The original (“verbatim”) version, without any
kind of optimizations.

• The original (“verbatim”) version, with compiler
optimizations.

• Three optimized versions, each one adding a new
precomputed term to the previous version

• A nearest neighbor search.

The benefits of precomputing values or using a near-
est neighbor search are obvious from the figure.

3.4. Guessing the author of an unknown song

An interesting experiment performed was to query the
system about a song not stored in the database. Obvi-
ously the system can not guess the title of the requested
song, but, interestingly enough, it can correctly guess the
author of the song in most of the cases (provided that the
author is present in the database). This author search can
be implemented by only searching in the top level of the
database, which consists of author GMMs.

Another interesting result in this type of searches is
that, when the search fails to correctly determine the au-
thor, the incorrect author is somewhat related to the actual
answer. For example, when querying about an unknown
song performed by Frank Sinatra & Bono 2 the system
answered with the author “Frank Sinatra”

3.5. Incomplete and modified song files

Another interesting experiment performed was to query
the system using feature vectors extracted from modified
or incomplete song files. On most of the cases the sys-
tem was able to guess correctly the author and title of the
song. So far, and based on the experiments performed in
this area, the following conclusions can be made:

• When using an incomplete song file for the query,
the sampling and feature extraction process is cru-
cial for the success of the query. The first proto-
types of the system used a very simple sampling
process where the song was not uniformly sam-
pled (each X seconds 100 features were extracted).
While this sampling process performed good when
the query used the features of a complete song file,
it had very bad results when the song file used to
query was just an portion of the song. The current
sampling process (extract all features of the song
file and then take only 1 of each 15) looks like is
quite robust and performs well under this situation.

• The accuracy of the results do not seem to be af-
fected by the encoding of the song file. The system
was able to correctly match an unknown MP3 file
with an OGG song in the database.

2Duets are treated as a different artist in the database

• Several other modifications (such as adding line
noise, using a low-pass filter, playing the song at
double speed) where done to the songs used to
query the system, and the system still answered
correctly to most of them.

4. Further improvements

As it has been said, the current state of the system is far
from finished. There are a lot of improvements that could
be done in other to improve both accuracy and speed:

• Regarding speed, maybe the most promising
improvement would be to create more hierarchy
levels in the database. Rather than creating by
hand these categories (like we did with the author
hierarchy level), a clustering algorithm could
be used in order to improve the reliability and
accuracy of the searches.

Another option would be to parallelize the search
between several processors. This parallelization
could be done query-wise (distribute the client
queries to each processor of the system) or search-
wise (for each query conduct a parallel search).

Heuristics to filter the search space are also another
interesting path. The general strategy would be
to, after completely determining the search space,
quickly filter out the unlikely candidates before
starting the (computationally) costly log-prob test
procedure. Examples of these heuristics could be:

– Take into account the song duration, if we
know it. Calculate a safe margin around this
value (e.g.: ±40%) and filter out the songs
whose length is not inside this interval. This
is a fast filtering technique that only requires
a slight modification of the song database (in-
clude another column with the song duration)

– Some music formats include metainforma-
tion about the song (ID3 fields in MP3 files
for example). While this information can
not be assumed to be correct or complete
(why are we performing the search other-
wise?) it can be used to narrow the search
space by only testing elements with “sim-
ilar” metadata. The notion of “similarity”
between strings could be implemented with
string matching algorithms.

Taking into account the final objective of the sys-
tem can also be useful. If the system is to be de-
ployed as a commercial song recognition service
then it is likely that most of the queries would be
about a small set of songs (popular and new songs).



Figure 2: Beam search over a 2-level hierarchical
database

Therefore, a small cache containing the most re-
quested songs could be implemented and searched
before anything else.

• Accuracy could be improved , specially when
using the nearest neighbor search, extending the
current hierarchical search to resemble a beam
search. Figure 4 shows a beam search with
branching factor 2 over a 2-level hierarchical
database. The exact branching parameter should
be determined empirically, since a too high
branching factor would reduce the search speed
and a too low factor would undermine the accuracy.

As I have said previously, a nearest neighbor search
in the higher levels of the song hierarchy (the au-
thor level in the implementation) can do more bad
than good, due to the lost of precision when calcu-
lating the log-probabilities. Using a more precise
log-prob function in these higher levels should im-
prove accuracy, at the cost of an increased search
time.

5. Conclusions

Although the system implemented lacks of some features
and improvements, it serves as a proof that Gaussian Mix-
ture Models can be used to recognize music with a high
degree of accuracy and reasonable speed.

This project is also a good example of how performance
can be improved by working at several levels at once:

• By improving the algorithms behind it, such as the
nearest neighbor search

• By improving the data structures, such as using an
hierarchical database

• By reorganizing the code, precomputing some val-
ues

• By using optimizing compilers

I also consider this project a good start point for
someone who wants to research more in this area. The
most essential features are already there and therefore no
extra time has to be wasted reimplementing the “skele-
ton” of the music recognizer.

6. References

[1] Reynolds, Douglas A. and Rose, Richard C., “Ro-
bust text-independent speaker identification using
Gaussian mixture speaker models”, IEEE Trans.
Speech and Audio Proc., 3(1):72–83, 1995.

[2] More, Andrew W., “Clustering with Gaussian Mix-
tures”, http://www.cs.cmu.edu/˜awm/
tutorials

[3] S. B. Davis and P. Mermelstein, “A Comparison of
Parametric Representations for Monosyllabic Word
Recognition in Continuously Spoken Sentences”,
IEEE Transactions on Acoustics, Speech, and Sig-
nal Processing, Vol. ASSP-28, No. 4, pp. 357-366,
August 1980.


