
Speech-enabled Web Forms

Mikko Honkala, Mikko Pohja

Helsinki University of Technology
Telecommunications Software and Multimedia Laboratory

[mikko.honkala|mikko.pohja]@tml.hut.fi

Abstract

Using Web applications with multiple modalities, and
especially speech is a difficult problem. For instance, the
navigation differs from GUI based navigation, since in
speech, the user interface has to be serialized. Current
web technologies make applications usable only with one
modality at the time (HTML vs. Voice XML).

This paper presents an idea of using XForms as the UI
description language, and automatically creating UIs for
different modalities based on a single XForms descrip-
tion. Three approaches of realizing speech UIs are de-
scribed, and dialog-based approach is chosen to suit best
the automatical creation of a speech UI.

There are several features in XForms, which make
the task easier compared to HTML forms. XForms pro-
vides datatypes to the filled data, and it supports dynamic
changes in the UI based on user input.

The paper also describes an implementation of this
idea. The implementation is now part of the open-source
X-Smiles XML browser. The implementation allows
multimodal interaction on any XForms. It uses Sphinx-4
and FreeTTS as the ASR and TTS implementations, re-
spectively.

A use case was developed to demonstrate the func-
tionality of the implementation. The use case is a airline
ticket reservation system. The use case demonstrates in-
put and output of several datatypes, as well as navigation
within a form.

1. Introduction

The diversity of devices accessing the Web as well as the
applications running on the Web is increasing. Currently
there is a lot of interest in delivering Web applications
to different devices and usage scenarios regardless of the
modality. For instance, Web applications could be used
with voice while driving a car.

1.1. Research problem and goals

The main research problem is how to implement mul-
timodal user interfaces in the Web context using a
high-level user interface description language, such as
XForms. The research was conducted in two phases.

First, a literature study is done, in order to have a good
understanding of the requirements. Second, an XForms
implementation will be extended to include voice recog-
nition features, in order to demonstrate the approach.

The main problems are related to navigation of a ran-
dom form, which is not designed for speech interaction.
Also, some types of input can be difficult to implement
with voice. An example is a free-form text input.

The main result is an implementation that reads in any
XForms compliant form, and allow filling and submitting
it with voice input and output.

2. Background

2.1. Speech UI

As a modality, speech is quite different from graphical
UI. The main difference is the navigation within the UI.
In graphical model, the whole UI can be viewed at the
same time, or at least the navigation between different
parts is always possible. On the other hand, spoken com-
mand input allows intuitive shortcuts. It has been shown
an efficiency increase of 20-40 per cent using speech sys-
tems compared with other interface technologies, such
as keyboard input [1, 2]. Although speech interaction
seems to be promising, the potential technical problems
with speech interfaces may irritate the user and reduce
task performance [3]. That is why speech is often used
by combining it with other modalities to offset the weak-
nesses of them [4]. Especially, GUIs are often combined
with speech modality [5].

Basically, there are three different approach to realize
speech interface: command, dialog, and natural language
based. Human-computer interaction through speech is
discussed in [6]. The basis of the paper is that perfect
performance of a speech recognizer is not possible, since
the system is used e.g. in noisy environments with dif-
ferent speakers. Therefore, dialog and feedback skills are
important to a recognizer because both human and com-
puter may misunderstand each other. Conclusion is that
a speech interface should provide adaptive feedback and
imitate human conversation.



2.2. VoiceXML

Voice Extensible Markup Language (VoiceXML) Ver-
sion 2.0 [7] is currently the best candidate for high-level
speech UI definition language.VoiceXML is designed for
creating audio dialogs that feature synthesized speech,
digitized audio, recognition of spoken and DTMF key
input, recording of spoken input, telephony, and mixed
initiative conversations. Its major goal is to bring the ad-
vantages of Web-based development and content delivery
to interactive voice response applications.

An VoiceXML application is a set of documents,
which share the same root document. The root document
is automatically loaded when one of the application doc-
uments are loaded, and it contains information, which is
available to all documents in the applications (e.g. main
navigation, etc.). The application contains a set ofdialog
states, from which only one is active at a time. Each dia-
log specifies how to transition to the next state.Menu is
a simple dialog, which allows the user to select from dif-
ferent transitions to other dialog states.Form is a more
complicated dialog, which allows the user to fill in differ-
ent values and to submit the filled values to a server-side
process.

The biggest problem with VoiceXML’s usage in the
Web is that all user interfaces have to be programmed
twice; once for the Graphical browser using HTML and
once for the voice browser, using VoiceXML.

2.3. XForms

XForms 1.0 Recommendation [8] is the next-generation
Web forms language, designed by the W3C. It solves
some of the problems found in the HTML forms by sepa-
rating the purpose from the presentation and using declar-
ative markup to describe the most common operations in
form-based applications. It can use any XML grammar to
describe the content of the form (the instance data). Thus,
it is also possible to create generic editors for different
XML grammars with XForms. It is possible to create
complex forms with XForms using declarative markup,
thus not resorting to scripting.

XForms is an abstract user interface description lan-
guage. One of it’s design goals was not to mandate a
certain modality. Therefore it can be suited to describe
user interfaces which are realized in different modalities,
such as the GUI and Speech.

3. Requirements

The objective of the work was to integrate speech recog-
nizer and synthesizer into X-Smiles. That enables dialog
based interaction between user and the browser. The in-
teraction includes navigation in a document and filling of
a form. User must be able to focus to a form element by
speech. The forms are usually hierarchical so the naviga-
tion has to be possible both to siblings and to parent and

Figure 1: The components of the implementation.

children. Since current recognizers are grammar based,
the implemented form controls must have limited set of
selections. That include selection lists, datatype specific
controls like dates and numbers, and triggers (e.g., sub-
mit).

4. Implementation

The research problem was addressed by taking a free
XForms implementation and designing and implement-
ing speech interface into it. The open source XML
Browser X-Smiles was used as the XForms implemen-
tation. Sphinx-4 was used as the speech recognition en-
gine and FreeTTS as a speech synthesis engine. All the
projects are written in pure Java, so they were rather
straight-forward to integrate. All the components are
shown in Figure 1.

An XML document is parsed by the XML parser,
which creates the DOM presentation of a document. The
DOM document is given to the XForms engine. Schema
processor provides datatypes for XForms engine. Speech
widgets are created for each element according to the
datatypes. Widgets store the inputted data to a form in
correct format. To integrate speech components into X-
Smiles, we defined a Speech API. The recognizer and
synthesizer are used through the API. The dialog han-
dler is build on top of XForms Engine. The handler uses
speech widgets and focus manager to provide a speech
UI.

4.1. Design

The speech implementation works on top of the XForms
DOM. The implementation consists of a focus manager
and speech widgets. The duties of the focus manager are
to search the focus points of a document and hold the cur-
rent focus point. The focus point is an XForms element.
Elements, which does not have a label like HTML blocks,
cannot be focus points. The focus points of a sample doc-
ument are depicted in Figure 2.



Figure 2: Focus points of a document.

The focus manager provides all the possible focus
points from current focus point. The possible points are
successors of the current point. In the example (cf. Fig-
ure 2), the possible focus points from point1 are1.1, 1.2,
1.3, and1.4. Note that the items with only one choice are
ignored (e.g., ancestor of1.1).

The speech widgets are the interface between XForms
DOM and speech recognizer and synthesizer tools. Their
responsibilities include generation of a dialog when an
element is focused. Widgets also generate grammars
for speech recognizer according to the possible selec-
tions. JSGF grammar format was used, since that is
what Sphinx-4, and Java-based tools in general, support.
User’s answer is returned to a widget as a Java String,
and the widget parses it and interprets to a corresponding
element.

Every time focus changes, the dialog handler must
create a new grammar for the recognizer. Creation of a
grammar depends on a form control. Certain types of
control have a constant grammar (e.g., date and num-
bers). In that case, the grammar is fetched from a file.
If possible selections are defined in a form, the grammar
must be formed according to those. In every cases, navi-
gational commands are added to the grammar in the end
(e.g., back).

4.2. Operation

The speech implementation operates as follows. When
user focuses an element in a document (root element in
the beginning), the dialog handler creates a question or

command list and delivers it to the speech synthesizer.
The question consists of label of an element and possibly
the selections that can be made. The selections can be
for instance navigable focus points or items of a selection
input. Dialog hander creates grammar through a widget
for recognizer according to possible replies.

The dialog handler receives the reply from the recog-
nizer and delivers it to a corresponding widget. Widget
parses the respond and stores it to the form in correct
format. Finally, widget moves the focus to back to its
ancestor.

5. Use case

We made a simple airline ticket reservation system to
demonstrate the implementation. The graphical user in-
terface of the system is shown in Figure 3. There are
different input types in the document. Departure and des-
tination can be selected from a prefined list, date is a cal-
endar type input, and number of passengers must be in-
putted as integers. The adults and children integer input
elements are within group element. Finally, there are two
triggers for submit and reset the document. A possible
ticket reservation dialog between system and user is rep-
resented below.

System: SmilesAir ticket reservation. ”Departure”,
”Destination”, ”Date of travel”, ”Number of passengers”,
”Rate”, ”Submit”, ”Reset”
User: departure
System: Departure . Select from: ”Helsinki”, ”Oslo”,
”Stockholm”, ”London”, ”Paris”, ”Copenhagen”
User: oslo
System: You selected: Oslo
SmilesAir ticket reservation. ”Departure”, ”Destination”,
”Date of travel”, ”Number of passengers”, ”Rate”, ”Sub-
mit”, ”Reset”
User: date of travel
System: Date of travel November 29, 2004. Select a date.
User: seven december two thousand and four
System: Date of travel : seven december two thousand
and four
SmilesAir ticket reservation. ”Departure”, ”Destination”,
”Date of travel”, ”Number of passengers”, ”Rate”, ”Sub-
mit”, ”Reset”
User: number of passengers
System: Number of passengers. ”Adults”, ”Children”
User: adults
System: Adults 2. Select a number.
User: four
System: Adults: four
Number of passengers. ”Adults ”, ”Children”
User: back
System: SmilesAir ticket reservation. ”Departure”,
”Destination”, ”Date of travel”, ”Number of passengers”,
”Rate”, ”Submit”, ”Reset”



Figure 3: An airline ticket reservation system.

User: submit
System: Are you sure you want to :Submit ?
User: yes
System: Doing: Submit

6. Conclusions

Using Web applications with multiple modalities, and es-
pecially speech is a difficult problem. Current web tech-
nologies make applications usable only with one modal-
ity at the time (HTML vs. Voice XML). This paper
presents an idea of using XForms as the UI description
language, and automatically creating UIs for different
modalities based on a single XForms description.

There are several features in XForms, which make
the task easier compared to HTML forms. First, XForms
provides datatypes to the filled data, which makes it pos-
sible to create efficient speech grammars for input and
output. Second, XForms supports dynamic changes in
the UI based on user input. This means that the same
instance of the form can stay at the client longer, thus re-
taining the speech focus point. In HTML forms, the form
has to be recreated by the server, thus losing any speech
focus points.

We created an implementation of this idea. The im-
plementation is now part of the open-source X-Smiles
XML browser. The implementation allows multimodal
interaction on any XForms. It uses Sphinx-4 and
FreeTTS as the ASR and TTS implementations, respec-
tively.

A use case was developed, to demonstrate the func-
tionality of the implementation. The use case is a airline
ticket reservation system. The use case demonstrates in-
put and output of several datatypes, as well as navigation
within a form.

6.1. About the tools

The prototype shows that pure Java tools are feasible
to use in speech UI, when using modern desktop com-
puters (e.g. over 1GHz Pentiums with 256MB or more
memory). We suspect that these tools are not optimized
enough to be run on smaller mobile systems, such as
smartphones.

Sphinx-4 is under constant development, and the de-
velopers are keen to respond to outside requests. For in-
stance, they implemented switchable grammar partly be-
cause of our request.

Java platform is also going through development. It
was not possible to get Sphinx-4 and FreeTTS to coexist
in JDK 1.4.2, because of bugs in javax.sound, but upgrad-
ing to the latest 1.5.0 helped.

We have also found X-Smiles to be a good platform to
experiment with different XML-based markup languages
and UIs of different modalities.

7. Future work

Navigating large forms using the speech focus, presented
above, can be tedious. More work is required to study
the possibility of creating shortcuts in the navigation se-
quence. Also, some author control of speech input and
output is needed. Using sXBL [13] to bind in VoiceXML
constructs and using CSS Voice [10] and EMMA [11],
taking into account the Multimodal Interaction Frame-
work [12] might help.

The implementation, as it stands, could be improved
and extended. More widget types, such as range, and
textarea should be added. Better datatype support (i.e.,
time, duration, float, etc.) could be added as well. Also,
currently the implementation handles only XForms, and
support for XHTML could be added.

We have successfully used open-source tools to do
ASR and TTS, but some work is required there as well.
For instance, Sphinx-4 does not support unknown word
recognition. For instance, the dictionary we used, did not
have pronunciation rules for ”Stansted”, so it could not be
recognized at all from user input. There are methods to
support unknown word recognition [14]. That paper uses
the pronunciation dictionary to find out probabilities be-
tween letters and phonemes, and then constructs the most
probable pronunciation for that word with accuracy of
80% (English), and 95% (Germany). For limited gram-
mar (e.g. ”Stansted—Heathrow”), that accuracy should
be enough. This method is supported by FreeTTS, and
the same method should be implemented in Sphinx-4.



8. References

[1] Martin, G. L., ”The utility of speech input in user-
computer interfaces,” International Journal of Man-
Machine Studies, Vol. 30, pp. 355-375, Academic
Press Ltd, 1989.

[2] Visick, D. et al, ”The use of simple speech recogniz-
ers in industrial applications,” in the Proceedings of
INTERACT’84, London, UK.

[3] Shneiderman, B., Designing the user interface:
strategies for effective human-computer interaction,
2nd edition. Addison-Wesley, 1992.

[4] Cohen. P. R., ”The role of natural language in a
multimodal interface,” in the Proceedings of the 5th
annual ACM symposium on User interface soft-
ware and technology, Monteray, California, United
States, pp. 143-149, ACM Press, 1992.

[5] Mane, A. et al, ”Designing the user interface for
speech recognition applications,” ACM SIGCHI
Bulletin, Vol. 28, pp. 29-34, ACM Press, 1996.

[6] Brennan, S. E. and Hulteen, E. A., Interaction and
feedback in a spoken language system: a theoretical
framework, Knowledge-Based Systems, vol. 8, no.
2, pp. 143-151, 1995.

[7] McGlashan, S., et.al. Voice Extensible Markup Lan-
guage (VoiceXML) Version 2.0, W3C Recommen-
dation 16 March 2004.

[8] Dubinko, M., XForms 1.0, W3C Recommendation
14 October 2003.

[9] Daniel C. Burnett, et.al. (eds.), Speech Synthesis
Markup Language (SSML) Version 1.0, W3C Rec-
ommendation 7 September 2004.

[10] Raggett, D., D. Glazman (eds.), CSS3 Speech Mod-
ule, W3C Working Draft 27 July 2004.

[11] Chou, W., et.al., EMMA: Extensible MultiModal
Annotation markup language W3C Working Draft,
1 September 2004.

[12] Larson, J. A., et.al. (eds), W3C Multimodal Interac-
tion Framework, W3C NOTE 06 May 2003.

[13] Ferraiolo, J., et.al. (eds.), SVG’s XML Binding
Language (sXBL), W3C Working Draft 22 Novem-
ber 2004.

[14] Black, A., Lenzo, K., and Pagel, V.,Issues in build-
ing general letter to sound rules. In Proceedings
of the 3rd ESCA/COCSADA Workshop on Speech
Synthesis, 1998. pages 77–81, Jenolan Caves, Aus-
tralia.


