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Abstract

Most speech recognition systems take as an input a set
of features computed at fixed frame rate from short-time
windows of speech signal. An alternative to this frame-
work is to perform prior to the recognition phase some
acoustical analysis to get some explicit segmentation of
the speech signal. The segments obtained this way are
of variable lengths, and different features can be used for
different segments. The segmental framework allows a
richer set of acoustic phonetic features than can be incor-
porated into conventional frame-based representations.
In this survey project this framework will be studied in
detail. This course paper is divided in two parts: first a
general framework of segment based ASR as presented
by Mari Ostendorf et al. [1], the latter part of this pa-
per presents the details of the SUMMIT segment-based
speech recognition system developed at MIT.

1. Introduction

In the last two decades the automatic speech recognition
has dramatically improved. The use of mathematically
rigerous Hidden-Markov Models (HMMs) has in part
contributed to this. The acoustic models in HMM
based systems model the temporal sequence of feature
vectors computed at fixed frame rate, most commonly
10ms/frame. The duration of the typical phoneme
can vary from 20ms over to 200ms, thus the number
of fixed-rate feature vectors within the same phonetic
segment is usually much greater than one. Since in the
speech production the articulators move rather slowly,
the feature vectors within the same phonetic segment
are usually highly correlated. However, HMMs have
an inherent conditional independence assumption on
the observation feature vectors. This in turn means that
the fixed frame-rate feature vector used is HMM-based
recognizers fundamentally limits the range of acoustic
models that can be explored for encoding acoustic-
phonetic information [2].

In segment-based speech recognition system acous-
tic models model a sequence of feature vectors computed
at time intervals that are not necessarily equal. The

segment features are computed from a portion of the
speech waveform belonging to a hypothesized phonetic
segment. Briefly, the advantages of using segments are
listed in [1]:

• Segments provide a better framework for mod-
elling statistical dependence among spectra in
nearby frames.

• Average segment duration can be much greater
than the frame duration typically used in ASR sys-
tems leading to computational savings.

• Segment boundaries usually occur at points of
large spectral change. There is evidence that such
points may be particularly rich in phonetic infor-
mation about the identity of certain consonants.
Thus, measurements made near these points may
be found to be useful.

2. Segmental model vs. HMM

In [1] Ostendorf et. al. attempted to bring together a
variety of work done under a common framework in
order to make it easier for different researchers to benefit
from the successes of others. The research on the new
techniques (namely segment-based modeling) has tended
to proceed in isolated pockets. Here the basic idea of
segment models (SM) are introduced following their
paper.

The statistical approach for speech recognition in-
volves finding the underlying sequence of labels
aN
1

= {a1, . . . , aN} that is most likely given
the sequence of T D-dimentional feature vectors
yT
1

= {y1, . . . , yT }. In mathematical terms this can be
written as
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where ai corresponds for example to phone, and the rec-
ognized phone sequence is constrained to pronunciations
in a lexicon. a does not need to be a phone label, but
can be a longer unit such as biphone, triphone, or some



Figure 1: Hidden Markov model (HMM) and Segmental
Model (SM) illustrated as generative processes. (From
[1])

other automatically learned unit such as syllable. Equa-
tion 1 can be interpreted as consisting of a language
model p(aN

1 ), and an acoustic model p(yT
1 |a

N
1 ). The

fundamental difference in HMM-based ASR systems and
segment-based systems is namely in the acoustic model.
In HMMs the the fundamental observation distribution is
at frame level, where as in segment modeling the fun-
damental distribution model ba,l(y

l
1) = p(yl

1|a, l) rep-
resents a segment yl

1
= [y1, . . . , yl], where l is a ran-

dom variable, and a ∈ A, where A is the set of segment
labels. The difference of these models is illustrated in
Figure 1 from the perspective of generative models. The
“segment” can consist from phoneme to larger unit, and
it does not affect the probabilistic formalism presented
here. In both HMMs and SMs the discrete state sequence
sT

i , and (a, l)N
1 respectively is typically modeled as a

markov chain. In both HMMs and SMs there exists sev-
eral options for modeling the distribution of observations,
including dicrete distrtibutions, full or diagonal covari-
ance Gaussian densities, Gaussian mixtures and Lapla-
cian distributions. With SMs there are in fact even more
options because of the large number degrees of freedom.

2.0.1. General Modeling Framework

Segment model in general form provides a joint model
for observation sequences of random length yl

1
=

[y1, . . . , yl], generated by unit a with the density

p(y1, . . . , yl|a) = p(y1, . . . , yl|l, a)p(l|a) = ba,l(y
l
1)p(l|a)

(2)
From the above equation we can see that the segment
model for label a is characterized by 1) a duration
distribution p(l|a), and 2) a family of output densities
ba,l(y

l
1); l ∈ L that describes observation sequences

of different lengths. Also a Markov assumption for
sequences of ai is made either implicitly or explicitly
by embedding phone segments in a word pronunciation
network or other probabilistic finite-state network.

The simplest distribution assumption for a segment
model uses a single output distribution and assumes
independence between successive observed frames, and

that they are identically distributed within given segment
boundaries. This can be seen as a one-state HMM with
an explicit duration model

ba,l(y
l
1
) =

l∏

i=1

p(yi|a) (3)

This is called hidden “semi-Markov” model. Introduc-
tion of the explicit state duration model adds complexity
of hypothesizing segmentations in recognition and
training.

Next step of increasing the complexity is to use
multiple distribution regions r = 1, . . . , R still assuming
that observations are conditionally independent given the
segment length, and we have

ba,l(y
l
1
) =

l∏

i=1

p(yi|a, ri) (4)

where the specific distribution used for yi depends on the
region ri. This can be reduced to represent HMM with
complex topology. From here the segment model can be
generalized further in a variety of ways.

The segment duration distribution (in Eq. 2) can be
either parametric or non-parametric. For phone-sized
unit any reasonable distribution assumption works well
empirically, because the contribution of the duration
model is small relative to the segment observation prob-
ability. The family of output densities ba,l(y

l
1
); l ∈ L

represents l-length trajectories in vector space (yi ∈ <d)
with a sequence of distributions that can be thought as
a dividing the segment into separate regions in time.
Observations can correlate within and across regions.
Nevertheless, the distribution parameters are time invari-
ant within a region. Segment distribution region is in
some sence analogues to an HMM state. The collection
of distribution mappings Tl(i); i = 1, . . . , l; l ∈ L asso-
ciate each frame of the observation vector yi in the the
observation sequence with one of the model regions. The
mapping and the region dependent distributions provide
a means of specifying ba,l(y

l
1) for a large range l with a

small number of parameters.

The mapping Tl is a key component for specifying
the distribution family. Tl can be deterministic or
dynamic.

2.0.2. Recognition Algorithms

The recognition algorithms for the segment models is
similar to that used for HMMs. In HMMs the standard
recognition solution involves finding the most likely state
sequence via viterbi decoding and then mapping the state
sequence to the appropriate word sequence. For segment



Figure 2: Multi level segmentation of an utterance. From
up, speech waveform, spectrogram, hypothesised pho-
netic segmentation, best-scoring phonetic sequence, best-
scoring word sequence. (From [3])

models, the solution is analogous, but in this case, the
state includes both the segment label and duration, and
recognition involves finding

(N̂ , âN̂
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(5)
using a dynamic programming algorithm and then map-
ping the sequence to the appropriate word sequence, and
then mapping the segment label sequence to the appropri-
ate word sequence. The key difference between the SM
and HMM search algoritrhms is the explicit evaluation of
different segmentations. Segmentation adds an extra di-
mension to the dynamic programming search. Reducing
the search space is a key to reducing number of segment
evalutations. This is done by introducing a multi-level
segmentation of the signal prior to segment evaluations.
An example of a multilevel segmentation (dendogram) is
shown in Figure 2.

2.0.3. Parameter Estimation Algotithms

The hidden state component in acoustic modeling require
some kind of iterative algoritm for maximum likelihood
(ML) estimation of parameters. Ostendorf et. al. repre-
sent two algoritms, expectation-maximization (EM) and
”Viterbi training”, in generalized form that can be used in
both segmental and HMMs.

2.1. Models of Feature Dynamics

HMM can be seen as a special case of a segment model,
thus segment model is capable of acheieving at least the
same level of performance as an HMM. However, seg-
ment model allows more more general families of dis-
tribution than with HMM, especially distributions that
model feature dynamics. There exists many alternatives
for distribution assuptions that can represent feature dy-
namics such as “contrained mean”, Gauss-Markov, more

general linear models, and segmental mixture models.
Each of these are described in detail in [1].

2.2. SUMMIT Speech Recognition System

The segment-based framework for speech recognition
can be used in number of ways, and not all the systems
follow the same formalism. In this section SUMMIT
speech recognition system is introduced. SUMMIT is
probably the largest and most well known segment based
ASR system developed to this date. SUMMIT does
not follow exactly the formalism outlined above, but is
presented here as an example of a real segment based
ASR system.

SUMMIT system uses segment-based framework
for its acoustic-phonetic representation of the speech
signal. Acoustic and/or probabilistic landmarks form
a basis for a phonetic segment network, or graph as
in Figure 2. Feature vectors are extracted both over
hypothesized segments and at their boundaries to be
used in phonetic analysis; the system uses two types of
acoustic models: segment models and boundary models.
The obtained feature space for the speech signal takes
the form of an acoustic-phonetic network, whereby
different paths through the network are associated with
different sets of feature vectors. This is quite different
from prevailing approaches which employ a temporal
sequence of observation vectors, which typically contain
short-time spectral information. Segment models can be
be context-independent or context-dependent.

One requirement of segment based ASR system is
to explicitly hypothesize segment boundaries i.e. seg-
ment start and end times. It would be computationally
expensive to model and search all possible segments. In
SUMMIT system two types of segmentation schemes
have been used. One is based on finding the instances
of most acoustic variability in signal. This method does
not provide a comprehensive segmentation, and usually
much greater number of segments are created than there
are phonemes in an utterance. The other segmentation
method is ”segmentation by recognition”, whereby a
segment network is obtained in process of running a first
pass recognizer with a suitable search. This could be
for example forward pass Viterbi search of all possible
segmentations of set of frames. ”Segmentation by
recognition” has several desirable charactereistics. It
is flexible, because it can use any first pass recognition
strategy; it does not rule out the use of local acoustic
measures, or combination of context-dependent acoustic
measures and language models. Also ”segmentation
by recognition” is accurate, and minimizes the number
of deletion and insertion errors. Finally the first pass
recognition result can be used as such in subsequent
segment-based recognition taking advantage of different



Figure 3: A hypothetical segment network that contains
three features, a1, a2, and a3, and two segmentations.
(From [4])

recognition strategies.

In frame based ASR systems the set of acoustic features
A is a temporal sequence of vectors. Each segmentation
S of the speech signal accounts for all frames and
therefore all A, making it efficient to compute P (A|W ).
For segment-based recognition, A is a temporal network
of features and each segmentation S accounts on a subset
of all segments and and therefore only a subset, AS of
A. This makes it impossible to compare different paths
through the network with out some normalization. In
order for a path through S to account for all A, it must
also account for AS̄ , A = AS ∪ AS̄ . Figure 3 illustrates
this. For this hypothetical network there A contains
three features a1, a2 and a3, and two segmentations.
When examining a path through top segmentation, we
must account for both AStop

, containing a1, and AS̄top

containing a2 and a3. This leads for each segmentation,
S:

P (A|W ) = P (ASAS̄ |W ) (6)

this means that the entire segmentation network must be
processed once for each segmentation, and because the
number of possible segmentations grows exponentially as
the number of segments, such processing is conputation-
ally daunting. To overcome this SUMMIT system has
two strategies: “not” modeling, and “near-miss” model-
ing.

2.2.1. “Not” modeling

“Not” modeling is an algorithm that efficiently computes
P (ASAS̄ |W ) for segment based regognition using and
additional nonlexical “not” model, ω̄, to account for all
segments that are not in a segmentation and therefore AS̄ .
Assuming independence between AS and AS̄ , not model
ω̄ can be used to normalize each segmentation, S, to im-
plicitly account for all segments:

P (ASAS̄ |W ) = P (AS |W )P (AS̄ |ω̄)
P (AS |ω̄)

P (AS |ω̄)
= K

P (AS |W )

P (AS |ω̄)
(7)

K being a constant for all segmentations. Rather than
scoring AS against lexical models and AS̄ against “not”
model it is sufficient to score AS against all models, both

lexical and “not” models.

2.2.2. Near-miss modeling

“Not” modeling is efficient, but it has shortcomings. In
“not” modeling all segments that are not in the segmenta-
tion S are mapped into a single class, even though many
segments that are not in a segmentation are as distinct
as the segments that are in the segmentation. The other
suggested method in SUMMIT system is a generalized
idea of ”not” modeling called ”near-miss” modeling. In
this algorithm multiple nonlexical classes are used to
model segments that are not in the segmentation, but are
”near-misses” of those which are.

To efficiently compute P (ASAS̄ |W ) for near-miss
modeling, SUMMIT introduces a search algorithm
which associates each segment with a near-miss subset
drawn from all other segments in the network. The
near-miss subsets are drawn such that for each segmen-
tation, S, the near-miss subsets of the segments in S

are mutually exclusive and their union, Ā, is AS̄ . If
independence between AS and ĀS is assumed, for each
segmentation S we can compute

P (ASAS̄ |W ) = P (AS |W )P (ĀS |W̄ ) (8)

W̄ being the nonlexical models associated the the
segments that are not in S. It has been shown that there
exist such near-miss subsets for any segment network [4]

Near-miss modeling maintains the integrity of the
probabilistic framework, allowing the use of efficient
search strategies, such as viterbi, to enforce context
accross the entire segment network. It has the potential
for more sophisticated modeling than the anti-phone
method since it is general and allows the segments in the
network to be modeled in any manner. [3]

2.2.3. Landmark modeling

In addition to modeling segments, in SUMMIT sys-
tem additional information about segment boundaries, or
landmarks, is computed. [3] These landmarks Z adds a
new dimensionality to observation space A. If we denote
segments with X , and near-misses with Y , we need to es-
timate the probability P (X, Y, Z|S, U). It is reasonable
to assume independence between the segments and the
landmarks changing the computation of probability to

P (X, Y, Z|S, U) = P (X, Y |S, U)P (Z|S, U) (9)

Landmark models are computed at the positions all pos-
sible segment boundaries of the segment network, thus
a particular segmentation will assign some of the land-
marks to transitions between lexical units, while the re-
mainder of landmarks will be considered to occur inter-
nal to a unit. Every segmentation accounts for all of



the landmark observations Z making it unnecessary to
employ any normalisation criterion such as was in case
of graph-based observations. It is reasonable to assume
conditional independence between m individual observa-
tions in Z given U , and the probability P (Z|S, U) can be
written as

P (Z|S, U) =

m∏

i=1

P (zi|S, U) (10)

where zi is the observation extracted are the ith landmark.
Landmarks are comparable to frames, because they are
are sequental in nature, but they occur at uneven inter-
vals in time, and they occur much less frequently, mak-
ing the conditional independence assumption between in-
dependent landmarks more reasonable than that made in
frame-based methods. Overall the segmental measure-
ments can be interpreted to quantify within-phone dy-
namics, whereas landmark measurements quantify tran-
sitions between phones.

2.2.4. Decoding Implementation in SUMMIT

Since the features in segment based system does not
follow each other in sequential manner decodong
algorithms has to be modified to overcome this. In
SUMMIT system recognition is done via a modified
Viterbi algoritm that can be viewed as finding the best
path through two graphs; a conventional pronunciation
graph representing all possible word sequences and their
associated pronunciations, and an acoustic phonetic
graph representing all possible segmentations of spoken
utterance. This can be formulated as finding a best path
through a graph A ◦ U where A is the acoustic-phonetic
graph, and U is the pronunciation graph composed of
conversion of context-dependent to context-independent
lexical labels, phonological rules, mappings of pronunci-
ations to words in the lexicon, and language model. This
is done with finite state transducers [5].

Training is done by Viterbi-style training whereby
forced alignments of ortographic transcriptions are
computed to create reference phonetic transcriptions
that are used to train acoustic-phonetic models. Afore-
mentioned context dependent landmark models are
trained based on the forced alignment segmentations.
Between-phone landmarks are modeled as transitions,
and intra-segmental landmarks are modeled as internal
boundaries for a given phone. Anti-phone or near-miss
models are trained on all segments outside the forced
alignment segmentation through a segment graph.

2.2.5. Performance of the System

It is not the scope of this survey project to go into
specifics of any system, but the aim was to research the
framework itself. However, here some recognition results

achieved with the segment based system (SUMMIT)
is presented to show how far this framework can get
us. It also gives some idea what the features used in a
practical system might be. The SUMMIT system has
been tested on several domains over the years [6] [7],
but here recognition results for phonetic recognition are
presented as reported by Glass et. al. in [3].

Feature extraction is based on averages and deriva-
tives of 12 MFCCs and PLP cepstral coefficients plus
energy and duration. Acoustic models are based on
mixtures of diagonal Gaussians. Prior to modeling the
acoustic feature space is whitened with a global rotation,
which transforms the pooled within-class covariance of
the training data to identity matrix to get uncorrelated
training data, which has unity variance across all dimen-
sions. Also this technique reduces the dimensionality of
the feature vector itself.

All the test were based on widely used TIMIT acoustic-
phonetic corpus. Glass et al. reported phonetic
recognition error which included substitution, deletion,
and insertion errors. The language model used was
phone bigram based on the training data. A single
parameter controlled the trade-off between insertions and
deletions.

Combination of different configurations of segment-
based/landmark and anti-phone/near-miss models were
tested. A probabilistic segmentation, which produced
segment graphs with a density of approximately 60
segments/s compared to the 13 segments/s found in
an average TIMIT phonetic transcription, was used.
Best results were achieved with configuration where
landmark models were used in tandem with segment
models and anti-phone models were used. In this case
the reported phone error rate was 24.4%. In the Table 1
the best result is compared with the best results reported
in the literature. There are differences regarding the
complexity of the acoustic and language models, making
the comparison difficult, but Glass et. al. believe that
the results are a strong indication for the viability of a
segment-based approach.

Table 1: Reported phonetic recognition error rates on the
TIMIT core test set (from [3])

Method Phone error rate (%)
Triphone CDHMM 27.1
Recurrent Neural Network 26.1
Bayesian Triphone HMM 25.6
Near-miss, probilistic segmentation 25.5
Anti-phone, Heterogeneous classifiers 24.4



A nice property of the SUMMIT system is its fast training
cycle; the distributed computation allows one complete
acoustic training iteration of 100 hours of speech in 5-
6 hours. Also since the converge is fast the whole ASR
system can be trained in less than a day. In the HMM
based systems the training can take several weeks.

3. Conclusions

In this course paper a segment based speech recognition
framework was reviewed. First part of the paper concen-
trated on the work done by Mari Ostendorf et. al.. The
latter part of the paper described the most well known
segment-based ASR system called SUMMIT.

Segment-based framework is not strictly defined,
and development of segment-based speech recognition
ideas has happened in more or less isolation. Paper by
Ostendorf et. al. tried to define a common language
for researchers in different research lab to understand
the advances made by others in the field. This is by no
means an easy task, since there are no standard tools or
algorithms that people use exclusively.

The main advantages of segment-based modeling
of speech signal are: many alternatives for representing
a family of distributions (allowing trajectory modeling
and/or correlation modeling), and possibility for models
for intra-segmental timing. The main disadvantage is
the need of explicit segmentation. There have been
numerous of attempts to create explicit segmentation, but
so far use of segment networks (dendograms) has been
the answer to overcome this problem.

Frame based systems have provided the best results
for speech recognition in the recent years. The main
question raised by those developing the segental speech
recognition is, is the good performance of HMM based
systems because of the use of HMM or is it because
of the highly sophisticated algorithms developed by
numerous of scientist developing ASR systems using the
frame-based framework. There has not been many ambi-
tious attempts to develop a segment-based ASR systems,
so comparison between frame-based and segment-based
state-of-the-art ASR systems is not straighforward.
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