T-61.184 Speech Recognition and L anguage M odeling:
From Theory to Practice
Course Project
MUREA - MUsic REcognition Application

Ville Turunen, Jaakko Vayrynen, Jukka Parviainen

Laboratory of Computer and Information Science
Helsinki University of Technology (TKK)
{vt,jjvayryn, parvi }@is. hut.fi

Abstract

A music recognition application (MUREA) is imple-
mented for identifying songs from a database of songs.
The system trains a GMM model for each song in the
database using MFCC features extracted from raw audio.
The time-independent models represent the spectral prop-
erties of the songs. Songs are identified by comparing the
likelihoods of the models. Pruning and clustering meth-
ods are used to accomplish both fast identification and
low error rate. The identification of artist and genre is
also considered.

1. Introduction

Music recognition has some commercial products as well
as contains some academic research. A British company
Shazam Entertainment has created a service where the
end-user holds a mobile phone in front of the radio loud-
speaker, and after 30 seconds the service sends a SMS
containing information on the song. The music archive
contains some 2,200,000 songs and they receive over one
million calls a year.[6]

The models and principles used in the speech recogni-
tion field can be adopted to basic music recognition. The
standard Mel-Frequency Cepstrum Coefficient (MFCC)
features describe the acoustic contents of an audio sig-
nal. Simplifying the speech recognition paradigm by dis-
carding all time information, songs can be identified by
their acoustic space modelled by Gaussian Mixture Mod-
els (GMMs). We have built a system for identifying songs
based on the artist and title.

This paper is constructed as follows. First, the prob-
lem statement is described. Second, related literature is
viewed for existing music recognition systems, as well as
for the algorithms used in our approach. Third, our solu-
tion to the problem is described in detail with information
about needed software. Next, the data and the results of
our system are discussed. Finally, the project goals, fu-
ture improvements and work distribution are discussed.

2. Problem Statement

A musical composition consists of one or more sources
emitting notes in a sequential order. The sequence of
notes with different frequencies and lengths can be used
to define the composed song. The sources can be, for in-
stance, humans singing, acoustic instruments plucked or
hit, or natural or artificial sounds reproduced electroni-
cally.

Each source emits frequencies typical to its charac-
teristics, with some variability given the different notes.
Combined, the sources create a frequency distribution
that changes over time. Assuming time-independence,
each song can be described as a frequency distribution.
Using this simplified but compact description, a song can
be identified using a database of all songs.

3. Background Literature

Our project originates from the ideas in the course T-
61.184 Speech Recognition and Language Modeling.
Music recognition is considered to be similar to speech
recognition, and basically the same tools are used.

In the automatic speech recognition (ASR) linear pre-
diction coefficients (LPC), LPC-derived cepstral coeffi-
cients (LPCC), and mel-frequency cepstral coefficients
(MFCC) are often used as features. MFCCs have been
found most feasible in speech recognition. When studied
with music samples, MFCCs were still the most suitable
as well as the use of GMM was ensured [5]. GMMs are
used to approximate probability density function of the
observation samples (MFCCs). In Figurel there is an ex-
ample of 1-dimensional GMM with five Gaussians and 15
parameters totally. In speech recognition the dimension is
typically 39 and the number of Gaussians M = 5... 20,
which gives M weights, 390/ means, and 39M vari-
ances, when using the diagonal covariance matrix.

There are also other possibilities to the identifica-
tion like directly clustering the feature vectors. A self-
organizing map (SOM) based system was used in [7].

1D Gaussian Mixture Model using M = 5 Gaussians

; :
0451 — #L:w=0.15,u=-18,0°=0.7
— #2:w=016,p=-1.1,0°=04
0.4 — #3:w=028,1=02 02206
— #4:w=017,p=1,0°=0.3
035 — #5:w=0.24,u=150°=1
— GMM

0.3F

0.251

0.2

0.15F

0.1r

0.05f

Figure 1: Example of 1-dimensional Gaussian mixture
model (GMM) with 5 Gaussians.

A collection of 230 songs was analyzed using 484-
dimensional feature vectors and mapped on a two-
dimensional grid. This work was continued with ex-
tended features and a graphical user interface of “islands
of music” [8].

Computing the distance between two GMMs was
considered in [9]. The distance between two GMM den-
sity functions A and B is computed using “sampling
method”

T T
D(A,B) = Y logP(S}A)+) log P(SP|B) —

T T
> log P(S{|B) =) log P(S7|A)

where P(S:X|Y) is the likelihood for observations sam-
pled from model X given model Y. The parameter T’
(DSR, Distance Sample Rate) was evaluated and found
to be 1000 for (8 MFCC’s and 3 Gaussians) [10].

Given a distance matrix, samples can be clustered via
agglomerative hierarchical clustering. Each sample is a
cluster in the beginning. Clusters with minimum distance
are merged together. Distance matrix is then updated us-
ing the maximum distance pairwise in the clusters. The
size of the matrix decreased by one in each round. This
is continued as long as there is only one cluster with all
samples, or a priori number of clusters is reached. An ex-
ample is shown in Figure 2. In the first step the clusters B
and C are merged to a new cluster F'. The distance matrix
is modified by removing values shown with dashed line.

4. Objectives

Our objective is to build a working song identification
software system. The users should be able to train their
own databases and share them with others.

Figure 2: Agglomerative clustering is a bottom-up
method, where all samples are initialized to clusters. The
first step for five samples is shown in the figure.

4.1. Song identification

The system should be able to correctly identify most of
the songs it has been trained on. Some identification ac-
curacy may be sacrificed to achieve fast identification. At
first, we will only consider the popular MP3-format as
song input.

4.2. Artist and genre identification

In addition to song identification, we will attempt artist
and genre identification. We will consider clustering song
models and creating separate models for artists and genre.
For clustering, the k-means algorithm is one possible
choice.

4.3. Other features

The system should have an updatable database, to which
new songs can be added. Adding a few new songs should
not require retraining of the whole database.

4.4. Experiments

We will try to build a fast identification system. A possi-
ble enhancement to brute force search of all songs in the
database is a heuristic search that considers only a portion
of the songs in the database. The heuristic could employ
song clustering.

5. System Design

Our system uses Gaussian Mixture Models for identify-
ing songs. An overview of our system is given in Fig-
ure 3. A GMM is build for each song (and also for
each artist). Training the GMMs involves a number of
steps. First the MP3 file is converted to wav audio.
Then the audio is converted to a series of feature vec-
tors and a GMM is trained on these vectors. Identifying
an unknown song involves testing the features of the song
against the trained GMMs (acoustic models) and select-
ing the GMM which most likely produced the features.

artist / genre

v

search/
" | optimization

music | feature song ID

extraction

A

acoustic
model

Figure 3: Overview on MUREA.

5.1. Data preprocessing

We used a set of 4000 MP3 files from 206 different artists
to test the system. Our system ran on a 2800 MHz Pen-
tium 4 computer. The main part of the system was writ-
ten in C and some Perl-scripts were also written. We used
some freely available software to help. To convert MP3
files to wav format, we used mpg123 [1] . Features were
calculated using HTK toolkit [2]. Mp3info [3] was used
to extract artist and genre information from MP3 files.

5.2. Feature extraction

A perl script was created to handle extracting features
from all MP3 files. First, the MP3 file was decoded to
wav format using mpgl123. The audio was converted to
mono and down sampled to 16 kHz sampling frequency.
Then MFCC features were calculated from the wav-file
using HCopy program from HTK toolkit.

MFCC features with 12 cepstrum coefficients, an en-
ergy measure, deltas and accelerations were calculated.
We used 25 ms Hamming windows and 100 features per
second were extracted. Later we noticed that the energy
measure and its deltas get huge values at some points.
Normalization would have helped, but to avoid calculat-
ing all the features again we decided to discard the energy
measure and its deltas. So currently the system has been
tested using 36 dimensional feature vectors.

5.3. Artist and genre information

MP3 files have id3-tags which have information about
the artist and genre of the song. To build GMMs for
each artist we needed a list of songs that belong to that
artist. We wrote a perl script which generates this list
using MP3info.

Similar models could also be built based on genre
information of the songs. This would mean building a
model for each genre. However, many files did not have
genre information at all and often the genre information
was not correct. Therefore, we decided not to build genre
models.

5.4. Training Gaussian Mixture Models

The standard EM-algorithm [4] for training GMMSs was
implemented both in the linear domain and in the log do-
main. One GMM with a fixed number of Gaussians was
estimated for each song to model the acoustic content.

The model parameters could be initialized either with
random samples or using the mean and variance of all the
samples. With random samples, mixture weights were set
to be equal and sum to one, means were initialized with
random samples and the covariance matrix was a unit ma-
trix. In the latter case, initially there was only a single
Gaussian and the learning proceeded by repeating split-
ting the Gaussian with the largest weight and learning the
modified model until the number of Gaussians reached
the required number.

To reduce numerical problems, the weights and vari-
ances of the Gaussians were checked after each parame-
ter update. The weights were forced to be at least 0.01 by
setting the value to the minimum value if it was below it.
If a weight went below value 0.00001 the corresponding
Gaussian was removed and the Gaussian with the largest
weight was split into two.

5.5. Identifying songs

An unknown song is represented as a set of feature vec-
tors. Identification of the song was accomplished by com-
paring the log-likelihoods of the song models for the in-
put data and picking the model that gives the highest log-
likelihood.

In order to speed up the recognition, nearest-
neighbour approximation, where a single Gaussian is
considered to be responsible for the whole log-likelihood,
was implemented for the identification phase. Beam
pruning and hierarchical search were also implemented to
speed up the identification. Some speed gain over accu-
racy was achieved also by using only a subset of features
in the learning and identification phases.

5.5.1. Bruteforce search

A brute force search linearly calculates the log-likelihood
for each song model and selects the model with the high-
est value. The method is accurate and was considered as
a base line method.

5.5.2. Beampruning

Beam pruning was adopted from speech recognition to
prune out unlikely models. The basic idea behind beam
pruning is that by using some approximation of the com-
plete log-likelihood, only models that seem promising at
the moment are worth the computational cost of com-
puting the final log-likelihood. The downside of re-
duced computational cost is that it might discard the right
model.

We calculated an approximation of the log-
likelihoods with a random subset of the features
vectors. Models with log-likelihoods below a threshold
were discarded and the log-likelihoods of the remaining
models were re-calculated in the next pass using more
feature vectors. The beam threshold was determined by
subtracting a small fraction of the difference between
the maximum and the minimum log-likelihood from
the maximum log-likelihood. The fraction was deter-
mined by the “beam width” parameter. The beaming
was repeated until there was only one model left or a
predetermined number of iterations was reached.

5.5.3. Hierarchical search

In a hierarchical search, a set of models is approximated
by a single model. We assigned one cluster for each song
model and created GMMs for the clusters. To identify
a song, the best IV clusters were identified using a lin-
ear search over the cluster models, after which the search
was repeated with the models in the selected clusters. The
search hierarchy is illustrated in Fig. 4. The identification
fails if the linear search fails either with the cluster mod-
els or the lower-level models.

We implemented a two-level hierarchical search us-
ing agglomerative hierarchical clustering, which is an un-
supervised clustering method. Supervised clustering was
also tried using the artist information for the songs.

-~ -~ - o~
-- LEESREN - oo =~
O es® Ve N A *
o o S . °
1 ~ ~ ’
° S N [} LAY
' % 8o " o, Yo __ o/
oo o, s = ~<. 7
—~*"¢exX_10 - -7~ ~v
- e ~_" - &~
.7 e ARG . |
0 e, ‘s . ° 1
C--.— & o ®
P ° o
e D ol \ oo ,
\ - ' % 0"g
T Ve o°° .
b\— PR N °_-
- N
’ [J ~
.. I h
‘e .D o ! ==
1 ° ',' ’ P
[} 4
1% o ‘g e U0
~_--- ~e_--"

Figure 4: In a hierarchical search each song belongs to
a cluster which has a prototype GMM (boxes). N best
clusters are chosen first, and the linear search is continued
only in those clusters.

6. Results
6.1. Brute force

To see how accurate the search can get, brute force linear
search was tested. 4000 song models with 16 Gaussians
each were taught. A random set of 750 songs was used for
testing. At this test, all the features of the test song were
used to calculate the likelihoods. Only four songs were
misidentified giving the accuracy of 99.5%. However, the
search was infeasibly slow. On average, identifying one

song took 13 minutes. Nearest neighbor approximation
was used. Because the accuracy was so good, we decided
that it was not necessary to test the performance without
the approximation.

6.2. Beam pruning

Beam pruning proved to be the most effective way to
reduce search times without hurting the accuracy much.
The same 4000 model database and 750 song test set were
used. Three different beam widths were tested and the
results are summarized in Table 1. At each iteration, the
likelihoods of the remaining models were calculated by
using 200 random samples. By further optimizing the
search parameters such as beam width and number of
samples used as well as model parameters, results could
be improved.

Beam width | Accuracy Time

Brute force 99.5% 781s
Beam pruning 0.1 99.3% 54.3s
0.01 98.9% 33.8s

0.001 98.3% 17.8s

Table 1: Accuracy and average running time per song
for brute force and beam pruning search. 4000 song
database.

6.3. Hierarchical search

Clustering is a very time consuming process. To save
time, the methods have so far been tested only on a
database with models for 1000 songs using 8 Gaussian
mixtures. The 1000 songs were selected randomly from
the 4000 song database. All 1000 songs were also used
for testing.

Two cluster hierarchies were built, one using agglom-
erative hierarchical clustering and the other using artist
information, one cluster for each artist. The artist pro-
totype models were estimated by randomly sampling fea-
tures from all the songs from that artist. The database had
songs from 114 different artists, so 114 models were es-
timated in the supervised case. In the unsupervised case
50 clusters were build. First, a linear search is done over
the cluster models. NV best clusters were selected and the
song models in those clusters were searched linearly. The
results for different values of IV are summarized in Table
2. As before, results could be improved by optimizing
parameters such as number of clusters used. Also, beam
search could be combined with the hierarchical search to
make the searches faster.

6.4. Artist identification

To further investigate how well the artist of the song can
be identified, another set of artist models were build. This
time only those artists were included who have 8 or more

N | Accuracy Time

Unsupervised 1 25.6% 19s
3 471% 3.1s

5 57.7% 4.4s

10 77.0% 84s

Supervised 1 46.0% 3.3s
3 62.0% 3.7s

5 69.1% 455

10 785% 6.3s

Table 2: Accuracy and average running time per song for
hierarchical search. 1000 song database.

songs in the database. For each artist, 75% of that artist’s
songs were included in the training set and the rest 25%
were held out for testing how well the system can deter-
mine the artist of a song it has never seen.

Total of 2883 songs from 87 artists were included in
the training. 87 GMMs with 16 Gaussians each were es-
timated. The test set consisted of 946 songs. The perfor-
mance of the system was measured both with the songs in
the training set and songs only in the test set. The identifi-
cation was considered a hit if the correct artist was within
the IV best classification results. The results for different
values of N are summarized in Table 3.

N | Training set Test set

1 425% 30.7%
3 59.9% 46.7%
5 68.3% 57.0%
10 78.4% 71.4%

Table 3: Accuracy of artist identification.

7. Discussion
7.1. System performance

Our objectives for identifying songs were accomplished.
Beam pruning is an accurate and fairly quick method for
searching songs.

So far the system does not have an easy to use inter-
face for creating and updating the database. Objectives
concerning these features were not met. For beam prun-
ing (and brute force) search, adding a new model to the
database would be fairly easy, but for hierarchical search
some or all of the cluster prototype models would have to
be retrained.

The agglomerative hierarchical clustering did not
work as well as expected. The supervised clustering us-
ing artist models works better, which suggests that the
unsupervised clustering is done in an unoptimal way.

Models for identifying artists work as well as could
be expected. The error rate is still quite high, but trying
to model all songs from one artist by a single model is a

hard task since songs by the same artist can vary quite a
lot. Out-of-set songs were also classified quite well, only
10% or so less accurate than songs that were used in the
estimation.

7.2. Future improvements

Throughout the process, there are many parameters that
have not been optimized. In feature extraction, the pa-
rameters used were the same that typically used in speech
recognition. For music identification these may not
be very optimal. The estimation process could be im-
proved by adjusting the number of Gaussians used and
the number of features used. Better models could also
be achieved by using incremental mixture splitting which
was implemented but not tested.

The speed and accuracy of the beam pruning search
could be improved by adjusting the beam width, number
of samples used at each iteration and the maximum num-
ber of iterations. For hierarchical search, we believe that
finding more optimal values for the number of clusters
and the number of random samples used when estimating
the prototype models could improve the results greatly.
Another way of improving the hierarchical search would
be adding more levels to the hierarchy.

7.3. Work distribution

There were at least three main problems in this project.
First, a comprehensive archive of MP3 files had to be col-
lected and processed in order to complete feature extrac-
tion. Second, an effective implementation of the train-
ing algorithm had to be written. Third, non-exhaustive
search with a suitable clustering algorithm had to be exe-
cuted. Responsible members for these three aspects were
Ville Turunen, Jaakko Vayrynen, and Jukka Parviainen,
respectively. Most credits of the successful project be-
long to Ville Turunen and Jaakko Vayrynen.

8. References
[1] M. Hipp, http://www._.mpgl23.de/

[2] The Hidden Markov Model Toolkit (HTK), http:
//htk_eng.cam.ac.uk/

[3] R. Cerqueira, C. Teff, http://www_ibiblio.
org/mp3info/

[4] D. Reynolds, R. Rose, “Robust Text-Independent
Speaker Identification Using Gaussian Mixture
Speaker Models”, IEEE ASSP, Vol. 3, No. 1, pages
72-83, January 1995.

[5] J. Marques, P. J. Moreno, “A Study of Musical
Instrument Classification Using Gaussian Mixture
Models and Support Vector Machines”, Technical
Report Series CRL 99/4, Cambridge Research Lab-
oratory, June 1999

[6] Shazam Entertainment Ltd., http://www.
shazamentertainment.com/

[7]1 M. Fruhwirth, A. Rauber, “Self-Organizing Maps
for Content-Based Music Clustering”, Proceedings,
12th Italien Workshop on Neural Nets (WIRNO01),
Italy, May 2001

[8] E. Pampalk, “Islands of Music - Analysis, Or-
ganization, and Visualization of Music Archives”,
Diplomarbeit, Technical University of Vienna, De-
cember 2001, http://www.ai .univie.ac.
at/"elias/music/

[9] J. Aucouturier, F. Pachet, “Music Similarity Mea-
sures: What’s the Use?”, Sony Computer Science
Lab., Paris, France. IRCAM 2002.

[10] J. Aucouturier, F. Pachet, “Improving Timbre Simi-
larity: How high’s the sky?”, http://journal .
speech.cs.cmu.edu/articles/2004/3

A. Appendix

A.l. Usage of MUREA software

The quick guide for using MUREA

murea -h

Creating a new GMM song model database db . gmm

murea create FILENAME

Identification of a song using hierarchical search /
beam pruning / linear brute force search

murea -c search FILENAME
murea -b search FILENAME
murea -1 search FILENAME

Identification of a set of songs using hierarchical
search

murea -c batch-search FILENAME

