T-61.184 Automatic Speech Recognition: From Theory to Practice

http://www.cis.hut.fi/Opinnot/T-61.184/ November 22, 2004

Prof. Bryan Pellom

Department of Computer Science Center for Spoken Language Research University of Colorado

pellom@cslr.colorado.edu

T-61.184

Course Feedback http://www.cs.hut.fi/u/vjs/php/palaute.php

- It has been my pleasure teaching this course and being here at HUT since August 1st.
- Teaching styles between the U.S. and Finland are quite different, I hope this has not been any significant problem and I hope most of all that you have learned something from the course.
- Please be sure to fill out the course feedback so that I can improve the course for next time!

Automatic Speech Recognition: From Theory to Practice

ASR Course Review "The Highlights"

- Problem Formulation
- Feature Extraction
- Hidden Markov Models
- Acoustic Modeling
- Language Modeling
- Search
- Adaptation

Automatic Speech Recognition: From Theory to Practice

Automatic Speech Recognition: From Theory to Practice

Problem Description

 Given a sequence of observations (evidence) from an audio signal,

$$\mathbf{O} = o_1 o_2 \cdots o_T$$

Determine the underlying word sequence,

$$\mathbf{W} = w_1 w_2 \cdots w_m$$

Number of words (m) unknown, observation sequence is variable length (T)

Using Bayes Rule,

$$P(W|O) = \frac{P(O|W)P(W)}{P(O)}$$

Since P(O) does not impact optimization,

$$\hat{W} = \underset{W}{\operatorname{arg\,max}} P(W | O)$$
$$= \underset{W}{\operatorname{arg\,max}} P(O | W) P(W)$$

Let's assume words can be represented by a sequence of states, S,

$$\hat{W} = \arg \max_{W} P(O | W)P(W)$$
$$= \arg \max_{W} \sum_{S} P(O | S)P(S | W)P(W)$$

- Words \rightarrow Phonemes \rightarrow States
- States represent smaller pieces of phonemes

Automatic Speech Recognition: From Theory to Practice

- Optimize: $\hat{W} = \underset{W}{\operatorname{arg\,max}} \sum_{S} P(O \mid S) P(S \mid W) P(W)$
- Practical Realization,

P(O | S)

P(S | W)

P(w

Observation (feature) sequence

Acoustic Model

Lexicon / Pronunciation Model

Language Model

Automatic Speech Recognition: From Theory to Practice

Practical Speech Recognition

In practice, we work with log-probabilities,

$$\hat{\mathbf{W}} = \underset{\mathbf{W}}{\operatorname{arg\,max}} \{ \log(P(\mathbf{O} \mid \mathbf{W}) P(W)) \}$$

Common to scale LM probabilities by a grammar scale factor ("s") and also include a word-transition penalty ("p"):

$$\hat{W} = \underset{W}{\operatorname{arg\,max}} \left\{ \underbrace{\log(P(O \mid W))}_{\text{acoustic model}} + \underbrace{s \cdot \log(P(W)) + p}_{\text{language model}} \right\}$$

Automatic Speech Recognition: From Theory to Practice

Hidden Markov Models (HMMs)

- Observation vectors are assumed to be "generated" by a Markov Model
- HMM: A finite-state machine that at each time t that a state j is entered, an observation is emitted with probability density b_i(o_t)
- Transition from state i to state j modeled with probability a_{ij}

"Beads-on-a-String" HMM Representation SPEECH S IY CH D

Automatic Speech Recognition: From Theory to Practice

 $\overline{o_3}$ $\overline{o_4}$ $\overline{o_5}$ $\overline{o_6}$ $\overline{o_7}$

*0*₂

*O*₁

Components of a Speech Recognizer

Feature Extraction

Automatic Speech Recognition: From Theory to Practice

Goals of Feature Extraction

- Compactness
- Discrimination Power
- Low Computation Complexity
- Reliable
- Robust

Automatic Speech Recognition: From Theory to Practice

Frame Windowing

Each frame is multiplied by a smooth window function to minimize spectral discontinuities are the begin/end of each frame,

Mel-Frequency Cepstral Coefficients (MFCC)

- Davis & Mermelstein (1980)
- Computes signal energy from a bank of filters that are linearly spaced at frequencies below 1kHz and logarithmically spaced above 1kHz.
- Same and equal spacing of filters along Mel-Scale,

$$Mel(f) = 2595 \log_{10}(1 + \frac{f}{700})$$

Automatic Speech Recognition: From Theory to Practice

Dynamic Cepstral Coefficients

- Cepstral coefficients do not capture temporal information
- Common to compute velocity and acceleration of cepstral coefficients. For example, for delta (velocity) features,

Frame Energy

Frame energy is a typical feature used in speech recognition. Frame energy is computed from the windowed frame,

$$e[t] = \sum_{m} s^2(n)$$

• Typically a normalized log energy is used. E.g., $e_{\max} = \underset{t}{\arg \max \{0.1 \cdot \log(e[t])\}}$ $E[t] = \arg \max \{-5.0, 0.1 \cdot \log(e[t]) - e_{\max} + 1.0\}$

Final Feature Vector for ASR

A single feature vector,

□ 12 cepstral coefficients (PLP, MFCC, ...) + 1 norm energy \Box + 13 delta features

□ + 13 delta-delta

- 100 feature vectors per second
- Each vector is 39-dimensional
- Characterizes the spectral shape of the signal for each time slice

Automatic Speech Recognition: From Theory to Practice

Hidden Markov Models

Automatic Speech Recognition: From Theory to Practice

Discrete Symbol Observation HMM

A set of N states

 $S = \left\{S_0, S_1, \cdots S_N\right\}$

Transition Probabilities

$$a_{ij} = P(q_t = S_j | q_{t-1} = S_i)$$

A set of M observation symbols

 $V = \{v_1, v_2, \cdots v_M\}$

Probability Distribution (for state j, symbol k)

$$b_j(k) = P(o_t = v_k \mid q_t = j)$$

Discrete Symbol Observation HMM

Also characterized by:

□ An initial state distribution

$$\pi = \{\pi_i\} = P(q_1 = i)$$

Specification thus requires
 2 model parameters, N and M
 Specification of M symbols
 3 probability measures A,B,π
 λ = (A, B, π)

Three Interesting HMM Problems

Problem 1: Scoring & Evaluation

□ How to efficiently compute the probability of an observation sequence (O) given a model (λ)? → P(O| λ)

Problem 2: Decoding

Given an observation sequence (O) and a model (λ), how do we determine the corresponding state-sequence (q) that "best explains" how the observations were generated?

Problem 3: Training

□ How to adjust model parameters ($\lambda = \{A, B, \pi\}$) to maximize probability of generating a given observation sequence? → maximize P(O| λ).

Problem 2: Decoding

Given an observation sequence,

$$\mathbf{O} = \left\{ \mathbf{O}_1, \mathbf{O}_2, \cdots, \mathbf{O}_T \right\}$$

Find the single best sequence of states,

$$q = \{q_1, q_2, \cdots, q_T\}$$

Which maximizes,

$$P(\mathbf{0}, q \mid \lambda)$$

Automatic Speech Recognition: From Theory to Practice

Viterbi Algorithm

1. Initialization
$$\delta_1(i) = \pi_i b_i(\mathbf{0}_1) \quad \psi_1(i) = 0$$

2. Recursion
$$\psi_t(j) = \max_{1 \le i \le N} [\delta_{t-1}(i)a_{ij}]b_j(\mathbf{0}_t)$$
$$\psi_t(j) = \arg\max_{1 \le i \le N} [\delta_{t-1}(i)a_{ij}]$$

3. Termination
$$P^* = \max_{1 \le i \le N} [\delta_T(i)] \quad q_T^* = \arg\max_{1 \le i \le N} [\delta_T(i)]$$

4. Path Back trace
$$q_t^* = \psi_{t+1}(q_{t+1}^*)$$

Automatic Speech Recognition: From Theory to Practice

Viterbi Algorithm in Log-Domain

1. Initialization
$$\widetilde{\delta}_1(i) = \widetilde{\pi}_i + \widetilde{b}_i(\mathbf{0}_1) \quad \psi_1(i) = 0$$

2. Recursion
$$\begin{aligned} &\delta_t(j) = \max_{1 \le i \le N} [\widetilde{\delta}_{t-1}(i) + \widetilde{a}_{ij}] + \widetilde{b}_j(\mathbf{0}_t) \\ &\psi_t(j) = \arg\max_{1 \le i \le N} [\widetilde{\delta}_{t-1}(i) + \widetilde{a}_{ij}] \end{aligned}$$

3. **Termination**
$$\widetilde{P}^* = \max_{1 \le i \le N} \left[\widetilde{\delta}_T(i) \right] \quad q_T^* = \arg \max_{1 \le i \le N} \left[\widetilde{\delta}_T(i) \right]$$

4. Path Back trace
$$q_t^* = \psi_{t+1}(q_{t+1}^*)$$

Automatic Speech Recognition: From Theory to Practice

Acoustic Modeling

Automatic Speech Recognition: From Theory to Practice

Phoneme HMM

 Let's assume each phoneme is represented by 3 HMM states connected with forward transitions,

S1 models the beginning part of the sound, S2 the middle, and S3 the end-part of the sound unit.

Gaussian Mixture Model

- Single-state HMM model
- Observation probability a sum of M component Gaussians,

$$b(\mathbf{o}_{t}) = \sum_{k=1}^{M} w_{k} b_{k}(\mathbf{o}_{t}, \mu_{k}, \Sigma_{k})$$

=
$$\sum_{k=1}^{M} \frac{w_{k}}{(2\pi)^{d/2} |\Sigma_{k}|^{1/2}} \exp\left(-\frac{1}{2} (o_{t} - u_{k})' \Sigma_{k}^{-1} (o_{t} - u_{k})\right)$$

Tel 184

Viterbi Training

Given an utterance, we can construct the composite HMM from the phone units and use the Viterbi algorithm to find the best state-sequence (assignment of feature-vectors to HMM states):

Describing Context-Dependent Phonetic Models

Monophone:

□ A single model used to represent phoneme in all contexts.

Biphone:

□ Each model represents a particular left or right context.

□ Left-context biphone notation: (a-b)

□ Right-context biphone notation: (b+c)

Triphone:

□ Each model represents a particular left & right context.

□ (a-b+c) refers to phoneme "b" with "a" preceding and "c" immediately following.

Automatic Speech Recognition: From Theory to Practice

Example Splitting Questions

	\$silence	SIL br ls lg ga
	<pre>\$aspiration</pre>	HH
	\$dental	DH TH
	\$1_w	L W
	\$s_sh	S SH
	\$s_z_sh_zh	S Z SH ZH
	\$affricate	CH TS JH
	\$nasal	M N NG
	\$schwa	AX IX AXR
	<pre>\$voiced_fric</pre>	DH Z ZH V
	\$voiceless_fric	TH S SH F

"Is the Left-Context an "L" or "W"?" "Is the Right-Context an "L" or "W"?

T-61.184

Regular Expression Grammar

Grammar:

 $< sentence_{1} > = I \left\{ \begin{array}{c} would \ like \\ want \end{array} \right\} to \left\{ \begin{array}{c} go \\ fly \end{array} \right\} to < airport > \\ < airport > = \left\{ London, \ New-York, \dots \right\} \end{array}$

Finite-state representation:

Obtaining N-gram Probabilities

Maximum likelihood estimates of word probabilities are based on counting frequency of occurrence of word sequences from a training set of text data:

$$P(w_{n} | w_{n-1}) = \frac{C(w_{n-1}, w_{n})}{C(w_{n-1})}$$
$$P(w_{n} | w_{n-2}, w_{n-1}) = \frac{C(w_{n-2}, w_{n-1}, w_{n})}{C(w_{n-2}, w_{n-1})}$$

Making N-grams work for Speech Recognition

- Raw probabilities estimates from N-grams can lead to 0 probability events (as we just saw)
- For a vocabulary of 20,000 words, there are 400 million possible bigrams. Given a corpus of 10 million training words, there will be MANY unseen events
- Methods for addressing this problem:
 - □ Smoothing
 - □ Discounting
 - □ Backing-off
 - □ Interpolation

Automatic Speech Recognition: From Theory to Practice

Katz (1987) Back-off Language Model

Uses Good-Turing Smoothing. "Back-off" to lower-order n-grams,

$$P_{Katz}(w_{n} | w_{n-2}, w_{n-1}) = \begin{cases} \frac{C^{*}(w_{n-2}, w_{n-1}, w_{n})}{C(w_{n-2}, w_{n-1})} & \text{if } C(w_{n-2}, w_{n-1}, w_{n}) > 0\\ \alpha(w_{n-2}, w_{n-1}) \cdot P_{Katz}(w_{n} | w_{n-1}) & \text{otherwise} \end{cases}$$

 α (back-off weight) is calculated so probabilities sum to 1

Automatic Speech Recognition: From Theory to Practice

$$\begin{aligned} & \text{Computing a Probability from the} \\ & \text{Back-off (N=3)-gram Model} \\ P(w_n | w_{n-2}, w_{n-1}) = \\ & \left\{ \begin{aligned} P(w_n | w_{n-2}, w_{n-1}) & \text{if trigram exists, else,} \\ \alpha(w_{n-2}, w_{n-1}) P(w_n | w_{n-1}) & \text{if bigram } (w_{n-2}, w_{n-1}), \\ P(w_n | w_{n-1}) & \text{if bigram exists,} \\ P(w_n | w_{n-1}) & \text{if bigram exists,} \\ \alpha(w_{n-1}) P(w_n) & \text{otherwise} \end{aligned} \right\} \end{aligned}$$

Connected-Word Viterbi Search

The Token Passing Model

- Proposed by Young et al. (1989)
- Provides a conceptually appealing framework for connected word speech recognition search
- Allows for arbitrarily complex networks to be constructed and searched
- Efficiently allows n-gram language models to be applied during search

Automatic Speech Recognition: From Theory to Practice

Illustration of WLR Generation

Beam Pruning for Token Passing

- Find token with maximum partial path log-score, "s" at time "t".
- Prune away tokens that have score less than a threshold, e.g.,

prune if
$$s < (s_{max} - BW)$$

BW is preset "beam width"
BW > 0

Automatic Speech Recognition: From Theory to Practice

Typical Token Passing Search Loop

Multi-Pass Search

- Step 1: Use Knowledge Source (KS) #1 to generate a reduced hypothesis space
- Step 2: Rescore resulting hypothesis space with Knowledge Source #2.

Robust Acoustic Modeling & Adaptation

Automatic Speech Recognition: From Theory to Practice

Robust Acoustic Modeling

Robust Front-end Processing

Remove noise from speech

Design features to be as noise, channel robust as possible

Feature Compensation

Reduce the observed mismatch between the extracted features and estimated model parameters

Acoustic Model Compensation

Modify acoustic model parameters to closer match the observed test environment

Automatic Speech Recognition: From Theory to Practice

