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Today

Course Review (45 Minutes)

Project Talks (3:15-4:00pm)
Matti Aksela
“Classifier Combination for Speech Recognition”
Teemu Hirsimäki
“Weighted Finite-State Transducers (WFSTs)”
Janne Plykkönen
“An Implementation of a Token Pass Decoder”
Bernhard Leiner
“Noise Robust Speech Recognition”
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Course Feedback
http://www.cs.hut.fi/u/vjs/php/palaute.php

It has been my pleasure teaching this course 
and being here at HUT since August 1st.

Teaching styles between the U.S. and Finland 
are quite different, I hope this has not been any 
significant problem and I hope most of all that 
you have learned something from the course. 

Please be sure to fill out the course feedback so 
that I can improve the course for next time!
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ASR Course Review
“The Highlights”

Problem Formulation
Feature Extraction
Hidden Markov Models
Acoustic Modeling
Language Modeling
Search
Adaptation
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Problem Formulation
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Problem Description

Given a sequence of observations (evidence) 
from an audio signal,

Determine the underlying word sequence,

Number of words (m) unknown, observation 
sequence is variable length (T)

Tooo L21O =

mwww L21W =
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Problem Formulation

Goal: Minimize the classification error rate

Solution: Maximize the Posterior Probability

Solution requires optimization over all possible 
word strings!

)O|W(maxargŴ
W
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Problem Formulation

Using Bayes Rule,

Since P(O) does not impact optimization, 

)O(
)W()W|O()O|W(

P
PPP =

)W()W|O(maxarg    

)O|W(maxargŴ

W

W

PP

P

=

=



Automatic Speech Recognition: From Theory to Practice 9
T-61.184T-61.184

Problem Formulation

Let’s assume words can be represented by a 
sequence of states, S,

Words Phonemes States
States represent smaller pieces of phonemes

∑=

=

S

PWSPP

PP
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Problem Formulation

Optimize:

Practical Realization,

  P(W)
W)|P(S
S)|P(O

O  

∑=
S

PSPSP )W()W|()|O(maxargŴ
W

Observation (feature) sequence

Acoustic Model

Lexicon / Pronunciation Model

Language Model
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Practical Speech Recognition
In practice, we work with log-probabilities, 

Common to scale LM probabilities by a 
grammar scale factor (“s”) and also include a 
word-transition penalty (“p”):

( ){ })()W|O(logmaxargŴ
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Hidden Markov Models (HMMs)
Observation vectors are 
assumed to be 
“generated” by a Markov 
Model 

HMM: A finite-state 
machine that at each 
time t that a state j is 
entered, an observation 
is emitted with 
probability density bj(ot) 

Transition from state i to 
state j modeled with 
probability aij

S0

00a

01a

11a

S1
12a

22a

S2

1o 2o 3o 4o to 1+to 2+to To
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Modeled Probability Distribution

S0

00a

01a

11a

S1
12a

22a

S2
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“Beads-on-a-String” HMM Representation

CHS P IY

SPEECH

1o 2o 3o 4o 5o 6o 7o
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Components of a Speech Recognizer

Feature 
Extraction

Feature 
Extraction

Optimization 
/ 

Search

Optimization 
/ 

Search

Lexicon Language Model

Acoustic Model

Speech Text +
Timing +
Confidence
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Feature Extraction
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Goals of Feature Extraction

Compactness

Discrimination Power

Low Computation Complexity

Reliable

Robust
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Frame Blocking

AA

A

BB

B

~ 20 – 25 ms

~ 10 ms
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Frame Windowing

Each frame is multiplied by a smooth window function to 
minimize spectral discontinuities are the begin/end of 
each frame,

Frame
Extraction

Speech
signal Window

w(n)

)()()( nwnsnf tt =

)(nft)(nst
)(~ ns
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Mel-Frequency Cepstral Coefficients (MFCC)

Davis & Mermelstein (1980)

Computes signal energy from a bank of filters 
that are linearly spaced at frequencies below 
1kHz and logarithmically spaced above 1kHz.

Same and equal spacing of filters along Mel-
Scale,

)
700

1(log2595)( 10
ffMel +=
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MFCC Block Diagram

)(nft
( ) 2)(DFT nft

Power spectrum Mel-Scale Filter Bank

J1    )( L=jje
Energy from each filter

)log(o

Log-Energy

Discrete 
Cosine 

Transform
Compression & 
Decorrelation
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Dynamic Cepstral Coefficients

Cepstral coefficients do not capture temporal 
information

Common to compute velocity and acceleration 
of cepstral coefficients.  For example, for delta 
(velocity) features,

D typically 2
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Frame Energy

Frame energy is a typical feature used in 
speech recognition.  Frame energy is computed 
from the windowed frame,

Typically a normalized log energy is used.  E.g.,

( )∑=
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Final Feature Vector for ASR

A single feature vector,
12 cepstral coefficients (PLP, MFCC, …) + 1 norm energy
+ 13 delta features
+ 13 delta-delta

100 feature vectors per second
Each vector is 39-dimensional
Characterizes the spectral shape of the signal 
for each time slice
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Hidden Markov Models
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Discrete Symbol Observation HMM
A set of N states

Transition Probabilities

A set of M observation 
symbols

Probability Distribution
(for state j, symbol k)

{ }NSSSS L,, 10=

)|( 1 itjtij SqSqPa === −

{ }MvvvV L,, 21=

)|()( jqvoPkb tktj ===
)|(

)|(
)|(

2

1

iM

i

i

SvP

SvP
SvP

M

)|(

)|(

)|(

2

1

jM

j

j

SvP

SvP

SvP

M

Si

iia

ija
jja

jia Sj



Automatic Speech Recognition: From Theory to Practice 27
T-61.184T-61.184

Discrete Symbol Observation HMM

Also characterized by:
An initial state distribution

Specification thus requires
2 model parameters, N and M
Specification of M symbols
3 probability measures A,B,π
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Three Interesting HMM Problems
Problem 1: Scoring & Evaluation

How to efficiently compute the probability of an 
observation sequence (O) given a model (λ)?  P(O| λ)

Problem 2: Decoding
Given an observation sequence (O) and a model (λ), how 
do we determine the corresponding state-sequence (q) 
that “best explains” how the observations were generated?

Problem 3: Training
How to adjust model parameters (λ = {A,B,π}) to maximize 
probability of generating a given observation sequence? 
maximize P(O| λ).
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Problem 2: Decoding

Given an observation sequence, 

Find the single best sequence of states,

Which maximizes,

{ }ToooO ,,, 21 L=

)|,( λqP O

{ }Tqqqq ,,, 21 L=
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Viterbi Algorithm
1. Initialization

2. Recursion

3. Termination

4. Path Back trace
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Viterbi Algorithm Illustration
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Viterbi Algorithm in Log-Domain
1. Initialization

2. Recursion

3. Termination

4. Path Back trace
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Acoustic Modeling
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Phoneme HMM

Let’s assume each phoneme is represented by 
3 HMM states connected with forward transitions,

S1 models the beginning part of the sound, S2 the middle, 
and S3 the end-part of the sound unit.

S1

11a
12a

22a

S2 S3

23a
33a
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Gaussian Mixture Model

Single-state HMM model 
Observation probability a sum of M component 
Gaussians,
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Mixture Gaussian (1-D case)

-7.5 -5.5 -3.5 -1.5 0.5 2.5 4.5 6.5

Example: 3 mixtures used to model underlying 
random process of 3 Gaussians

)(ob

o
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Viterbi Training
Given an utterance, we can construct the composite HMM from 
the phone units and use the Viterbi algorithm to find the best 
state-sequence (assignment of feature-vectors to HMM states):
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Describing Context-Dependent 
Phonetic Models

Monophone:  
A single model used to represent phoneme in all contexts.

Biphone:
Each model represents a particular left or right context.
Left-context biphone notation: (a-b)
Right-context biphone notation: (b+c)

Triphone:  
Each model represents a particular left & right context.
(a-b+c) refers to phoneme “b” with “a” preceding and “c” 
immediately following.
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Decision-Tree State Clustering
(one tree built for each state-position)
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Example Splitting Questions
$silence                SIL br ls lg ga
$aspiration             HH
$dental                 DH TH
$l_w                    L W
$s_sh S SH
$s_z_sh_zh S Z SH ZH
$affricate              CH TS JH
$nasal                  M N NG
$schwa                  AX IX AXR
$voiced_fric DH Z ZH V
$voiceless_fric TH S SH F

“Is the Left-Context an “L” or “W”?
“Is the Right-Context an “L” or “W”?
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Language Modeling
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Regular Expression Grammar 
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N-gram Language Models
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Obtaining N-gram Probabilities

Maximum likelihood estimates of word 
probabilities are based on counting frequency 
of occurrence of word sequences from a 
training set of text data:
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Making N-grams work 
for Speech Recognition

Raw probabilities estimates from N-grams can lead to 0 
probability events (as we just saw)

For a vocabulary of 20,000 words, there are 400 million 
possible bigrams.  Given a corpus of 10 million training 
words, there will be MANY unseen events

Methods for addressing this problem:
Smoothing
Discounting
Backing-off
Interpolation
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Katz (1987) Back-off Language Model

Uses Good-Turing Smoothing.  “Back-off” to 
lower-order n-grams,

α (back-off weight) is calculated so probabilities 
sum to 1
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Computing a Probability from the 
Back-off (N=3)-gram Model
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Search
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Connected-Word Viterbi Search

0=t 3=t1=t time2=t 4=t 5=t

)( kWP

invalid

final

initial



Automatic Speech Recognition: From Theory to Practice 50
T-61.184T-61.184

The Token Passing Model

Proposed by Young et al. (1989)

Provides a conceptually appealing framework 
for connected word speech recognition search

Allows for arbitrarily complex networks to be 
constructed and searched

Efficiently allows n-gram language models to be 
applied during search
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Illustration of WLR Generation 

Figure
From Young
et al, 1989.
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Beam Pruning for Token Passing

Find token with maximum partial path log-score, 
“s” at time “t”.

Prune away tokens that have score less than a 
threshold, e.g., 

BW is preset “beam width”
BW > 0

)(    if   prune max BWss −<
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Typical Token Passing Search Loop

Prune
Tokens

1−t Propagate
& Merge
Tokens

t

WLRs
(raw lattice)
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Efficient Search Representations

* Figure adapted from Huang et al., Spoken Language Processing, Prentice Hall

B(?,EY)

EY(B,KD)

EY(B,K)

KD(EY,?)

KD(EY,TD)

BAKE

BAKED

K(EY,IX)

K(EY,AXR)

IX(K,NG) NG(IX,?)

AXR(K,?)

AXR(K,IY) IY(AXR,?)

BAKING

BAKER
BAKERY

TD(KD,?)
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Multi-Pass Search

Step 1: Use Knowledge Source (KS) #1 to 
generate a reduced hypothesis space

Step 2: Rescore resulting hypothesis space with 
Knowledge Source #2.

Speech
Recognizer

KS1

Rescoring
Pass

KS2

Lattice or
N-best Listspeech

Final 
output
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Robust Acoustic Modeling
& Adaptation
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Robust Acoustic Modeling

Robust Front-end Processing
Remove noise from speech
Design features to be as noise, channel robust as possible

Feature Compensation
Reduce the observed mismatch between the extracted 
features and estimated model parameters

Acoustic Model Compensation
Modify acoustic model parameters to closer match the 
observed test environment
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Robust Acoustic Modeling

Audio

Acoustic
Model

Model
Adaptation

Noise
Suppression

Noise
Robust
Feature

Extraction

Feature
Adaptation

Search


