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® Course Review (45 Minutes)

Today

" Project Talks (3:15-4:00pm)
O Matti Aksela
“Classifier Combination for Speech Recognition”

U Teemu Hirsimaki
“Weighted Finite-State Transducers (WFSTs)”

U Janne Plykkonen
“An Implementation of a Token Pass Decoder”

U Bernhard Leiner
“Noise Robust Speech Recognition”
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Course Feedback
http://www.cs.hut.fi/u/vjs/php/palaute.php

and being here at HUT since August 1st.

" It has been my pleasure teaching this course

®" Teaching styles between the U.S. and Finland
are quite different, | hope this has not been any
significant problem and | hope most of all that

you have learned something from the course.

that | can improve the course for next time!

~

® Please be sure to fill out the course feedback so

Automatic Speech Recognition: From Theory to Practice
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/ ASR Course Review \

“The Highlights”

® Problem Formulation
Feature Extraction
Hidden Markov Models
Acoustic Modeling
Language Modeling
Search

Adaptation
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Problem Formulation
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Problem Description

Given a sequence of observations (evidence)
from an audio signal,

O=0,0,:0;
Determine the underlying word sequence,

W=ww,---w

m

Number of words (m) unknown, observation

sequence is variable length (T) |
T-61.184
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¥ Goal: Minimize the classification error rate

}

® Solution: Maximize the Posterior Probability

~

Problem Formulation

N

W =arg max P(W | O)
\\

® Solution requires optimization over all possible
word strings!
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Problem Formulation

® Using Bayes Rule,

P(O|W)P(W)
P(O)

P(W|0)=

® Since P(O) does not impact optimization,

\_

W = argmax P(W | O)
W

=argmax P(O| W)P(W)
W

~

T-61.184
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Problem Formulation

Let’s assume words can be represented by a
sequence of states, S,

N

W =argmax P(O|W)P(W)
W

= arg max Z P(O|S)P(S|W)P(W)
S

Y

® Words - Phonemes > States

\_

States represent smaller pieces of phonemes

T-61.184 I/
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Problem Formulation

~

= Optimize: W =argmax » P(O|S)P(S| W)P(W)
S

W%

® Practical Realization,

\_

O

P(O|S)
P(S | W)

P(W)

Observation (feature) sequence
Acoustic Model

Lexicon / Pronunciation Model

Language Model

T-61.184 I/
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Practical Speech Recognition

In practice, we work with log-probabilities,

W =argmax {log(P(O | W)P(W))}

Common to scale LM probabilities by a
grammar scale factor (“s”’) and also include a
word-transition penalty (“p”):

Vo

W = arg max- }og(P(O | W)) +S- log(P(W)) +P

/4

acoustic model language model

L J
T-61.184 I/
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/ Hidden Markov Models (HMMs) \

" Observation vectors are d,
assumed to be
“generated” by a Markov
Model

" HMM: A finite-state
machine that at each
time t that a state j is
entered, an observation
is emitted with
probability density b,(o,)

® Transition from state i to
state j modeled with

kprobabilityaij O, 0, 03 04 O; 0,10, 5 Op
T-61.184
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/ Modeled Probability Distribution \
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‘Beads-on-a-String” HMM Representation

SPEECH

............. S P IY CH_

Q 0, 03 0, O0s Of O
T-61.184
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omponents of a Speech Recognizer

~

Feat Optimization | T_ex’_c+
Ex??agtl}zn / > Timing +
SEEIME  Confidence
g

I

/
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Feature Extraction
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® Compactness

~

Goals of Feature Extraction

® Discrimination Power
" Low Computation Complexity
® Reliable

® Robust
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Frame Blocking

—

00000
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Frame Windowing

~

® Each frame is multiplied by a smooth window function to
minimize spectral discontinuities are the begin/end of
each frame,

Speech

signal
—

s (n)

\_

Frame
Extraction

Ji(m)=s,(n)w(n)

s,(n)

Window
w(n)

i (n)

Automatic Speech Recognition: From Theory to Practice
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el-Frequency Cepstral Coefficients (MFCC)

(u

" Davis & Mermelstein (1980)

® Computes signal energy from a bank of filters
that are linearly spaced at frequencies below
1kHz and logarithmically spaced above 1kHz.

® Same and equal spacing of filters along Mel-
Scale,

Mel(f)=25951og,,(1+ -

k T-61.184 I/
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MFCC Block Diagram \

Power spectrum

fiw)

[DFT(f, ()

Mel-Scale Filter Bank

{00
|

Energy from each filter

Log-Energy

de(j) j=1-7

\_

log(°)

Discrete
Cosine
Transform

Compression &

Automatic Speech Recognition: From Theory to Practice
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® Cepstral coefficients do not capture temporal
information

~

Dynamic Cepstral Coefficients

® Common to compute velocity and acceleration
of cepstral coefficients. For example, for delta
(velocity) features,

Z T(cep[i][t +7]—cepli][t— T])
Acepli][r] =+ >

. 2 e
! D typically 2 -
T-61.184
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/ Frame Energy \

®" Frame energy is a typical feature used in
speech recognition. Frame energy is computed

from the windowed frame,

elt]= ZSz(I’l)

" Typically a normalized log energy is used. E.g.,

€0 = Arg maX{O.l - log(e[t])}

4

k E[t]=argmax{-5.0,0.1- log(e[t])— e +1.0} )
T-61.184
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Final Feature Vector for ASR

A single feature vector,

4 12 cepstral coefficients (PLP, MFCC, ...) + 1 norm energy

1 + 13 delta features
O + 13 delta-delta

100 feature vectors per second
Each vector is 39-dimensional

Characterizes the spectral shape of the signal

for each time slice

~

Automatic Speech Recognition: From Theory to Practice

T-61.184 I/
24



Hidden Markov Models
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B A set of N states
S = {SoaSv”'SN}

® Transition Probabilities

a,=P(q,=S,1q,.,=35,)
" A set of M observation

Discrete Symbol Observation HMM

symbols P(v,|S)) P(v|S))
VZ{Vsz»'“VM} P(v,|S)) P(v,|S))

" Probability Distribution : ;
(for state j, symbol k) P(v, |S,) P(v, |S))

k bj(k):P(Ot =V |Qt :])
T-61.184
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Discrete Symbol Observation HMM

® Also characterized by:

® Specification thus requires

\_

[ An initial state distribution

ﬂ:{”i}:P(% :i)

U 2 model parameters, N and M
O Specification of M symbols
O 3 probability measures A,B,n

A=(A,B,x)

P, |5;)

P(v[S);)
P(v,[S;)

Py, [S;)

Automatic Speech Recognition: From Theory to Practice
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®" Problem 1: Scoring & Evaluation

O How to efficiently compute the probability of an
observation sequence (O) given a model (A)? - P(O| 1)

~

Three Interesting HMM Problems

" Problem 2: Decoding

O Given an observation sequence (O) and a model (L), how
do we determine the corresponding state-sequence (q)
that “best explains” how the observations were generated?

®" Problem 3: Training

O How to adjust model parameters (A = {A,B,n}) to maximize
probability of generating a given observation sequence? -

k maximize P(O| 1).
T-61.184
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" Given an observation sequence,

0= {019029'”»0T}

Problem 2: Decoding

®" Find the single best sequence of states,

q = {Q1DQ29'“9qT}

® Which maximizes,

k P(0,q|4)
T-61.184
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/ Viterbi Algorithm

~

1. Initialization

0,())=70,(0,) v, ()=0

2. Recursion

0,(j) =max[o,_,(i)a;]b;(o,)

I<i<N

w,(j) =argmax|o, ,(i)a,]

I<i<N

3. Termination p* = max|s, (i)] g, = arg max[5T (i)]

I<isN I<i<N

4. Path Back trace q;k =, (q,:l)

=

T-61.184 I/
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Viterbi Algorithm lllustration

5.1
D,
) a, .

51( ) ¢ - >. §t+1(j):

6, (7) .al]//o max| 0 (1) 0,(0:.1)

5I(N) ® aNj ®

k time t time t+1
T-61.184 I/
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1. Initialization 5 (/)= 7, +5.(0,) w,(i)=0

Viterbi Algorithm in Log-Domain

5.(j)=max[5,_,(i))+a,]+b.(0
2. Recursion t(]) 1<i<N “() i J( t)

v, (j) = argmax(5, (i) + ]

I<i<N

3. Termination p*_— max@(;’)] qr = argmaXFT (i)]

I<i<N I<i<N

4. Path Back trace q; =, (q;)

k T-61.184 I/
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Acoustic Modeling

\_

Automatic Speech Recognition: From Theory to Practice
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/ Phoneme HMM \

" Let’s assume each phoneme is represented by
3 HMM states connected with forward transitions,

® S1 models the beginning part of the sound, S2 the middle,
and S3 the end-part of the sound unit.

k T-61.184 I/
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Gaussian Mixture Model

Single-state HMM model

~

® Observation probability a sum of M component

\_

Gaussians,

M
b(ot>=2wkbk<ot,uk,zk>

k:I

M
Z d/z‘zk‘ln eXp(—

l(Ot _uk)

2

/

> (o, —uk)j

Automatic Speech Recognition: From Theory to Practice
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Mixture Gaussian (1-D case)

b(0)

0

-7.5 -5.5 -3.5 -1.5 0.5 2.5 4.5 6.5

~

Example: 3 mixtures used to model underlying
random process of 3 Gaussians /
T-61.184
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® Given an utterance, we can construct the composite HMM from
the phone units and use the Viterbi algorithm to find the best
state-sequence (assignment of feature-vectors to HMM states):

91010192020)192920

/\/\/\/\N AVAVA

~

Viterbi Training

/observations

T-61.184

Automatic Speech Recognition: From Theory to Practice 37




/ Describing Context-Dependent
Phonetic Models

® Monophone:
O A single model used to represent phoneme in all contexts.

® Biphone:
O Each model represents a particular left or right context.
Q Left-context biphone notation: (a-b)
O Right-context biphone notation: (b+c)

" Triphone:
O Each model represents a particular left & right context.

(13 ” (1Pl

d (a-b+c) refers to phoneme “b” with “a” preceding and “c

k immediately following.
T-61.184
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/ Decision-Tree State Clustering \
(one tree built for each state-position)

ReReNom

HMDM state: I 2 3 4 3

i (): B_MNasal?

): L. Voiced-cons

b-aa+n k-aa+n n-aa+th
d-aa+m [-aa+m m-aa+l

g-aatng  N-aatng n-aa+w
s-aa+n

% -9 %

(): L._Nasal?
™

s-aa+r
b-aa+t
|-aa+s

Automatic Speech Recognition: From Theory to Practice

d-aa+k
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Example Splitting Questions

Ssilence SIL br 1ls 1lg ga
Saspiration HH
Sdental DH TH

$1 w LW

$s_sh S SH

$s z sh zh S Z SH ZH
Saffricate CH TS JH
Snasal M N NG
$Sschwa AX IX AXR
$voiced fric DH Z ZH V
$voiceless fric TH S SH F

\_

“Is the Left-Context an “L” or “W”?
“Is the Right-Context an “L” or “W™”?

~

Automatic Speech Recognition: From Theory to Practice
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Language Modeling

\_
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Regular Expression Grammar

~

Grammar:
would like (0 <airbortS
ﬁsentencel > = want p
ésentencez:: =
<airport> = {London, New-York,... }

Finite—state representation:

would like
f’—‘*./’

want

London

NN

fly

New—York
T-61.184
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N-gram Language Models

~

the united states of 77?7

\

/

|\

/

\

P (states |the united)

P(of | united states)

U

(
(
(America
(

P(Belgium

states of)

states of)

Automatic Speech Recognition: From Theory to Practice
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/ Obtaining N-gram Probabilities \

® Maximum likelihood estimates of word
probabilities are based on counting frequency
of occurrence of word sequences from a
training set of text data:

Cw_,w,
POw, | w, ) = taet: )

C(w, )

C(Wn—Z > Wn—l > Wn )

P(Wn | Wn—29 Wn—l) —

k C (wn_2 : wn_l) |
T-61.184
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/ Making N-grams work
for Speech Recognition

" Raw probabilities estimates from N-grams can lead to 0
probability events (as we just saw)

®" For a vocabulary of 20,000 words, there are 400 million
possible bigrams. Given a corpus of 10 million training
words, there will be MANY unseen events

" Methods for addressing this problem:
0 Smoothing
O Discounting
O Backing-off

~

k O Interpolation
T-61.184
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/Katz (1987) Back-off Language Model\

® Uses Good-Turing Smoothing. “Back-off”’ to
lower-order n-grams,

PKatz (Wn | Wn—Z,Wn—l) —

X
C (Wn—Z,Wn—l > Wn )

it C(w,_, w

n—1»°

w, )>0
C(Wn—2,wn—l)

\a(wn—2,wn—1) - Py

atz

(w, |w, _,) otherwise

" o (back-off weight) is calculated so probabilities

k sum to 1
T-61.184
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/ Computing a Probability from the \
Back-off (N=3)-gram Model

P(Wn | Wn—2,wn—1) —

.
P(Wn |Wn—2,wn—1)

N

kP(Wn |Wn—1)

P(Wn | Wn—l) —
(P(Wn |Wn—1)

k ka(wn-l )P (W, )

a(wn-Z’Wn—l )P(Wn | Wn—l) lf bigram (Wn-Z’Wn—l )9

. . . A
if trigram exists, else,

h'd

. . . A
if bigram exists,
-

otherwise )
T-61.184
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Search
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From Theory to Practice
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Connected-Word Viterbi Search \
@ @ > > O
@ 042—2—2—» o e
O N P P(W,
o o | oo |
/é‘%@ invalid
@

initial
;.4;.4;. o
ina

» time

T-61.184
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The Token Passing Model

®" Proposed by Young et al. (1989)

®" Provides a conceptually appealing framework
for connected word speech recognition search

® Allows for arbitrarily complex networks to be
constructed and searched

" Efficiently allows n-gram language models to be
applied during search

T-61.184 I/
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tokens

S score
-~ | pathid

{ time
one | model id

lllustration of WLR Generation

Figure

From Young
et al, 1989.

path id changed to
point to new WLR
before token is
propagated

Word Link
Records

Automatic Speech Recognition: From Theory to Practice
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/ Beam Pruning for Token Passing \

®" Find token with maximum partial path log-score,
“s” at time “t”.

®" Prune away tokens that have score less than a
threshold, e.g.,

— BW)

max

prune 1f s<(s

" BW is preset “beam width”

" BW>0 /
k T-61.184
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t—1

Propagate

& Merge
Tokens

Typical Token Passing Search Loop

~

VVLR
(raw lattice)

Prune
Tokens

\_

Automatic Speech Recognition: From Theory to Practice
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Efficient Search Representations

BAKE
KD (EY, ?)

- 812 823 azy

*

KD (EY, TD) [*® TD (KD, ?)

B(?,EY) BAKING

K(EY, IX) P IX(K,NG) PING(IX, ?)

EY (B, K)

K(EY, axR) k* AXR (x, 2) | BAKER

BAKERY
AXR (K, 1Y) *?IY (AXR, ?)

\Figure adapted from Huang et al., Spoken Language Processing, Prentice Hall
T-61.184
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® Step 1: Use Knowledge Source (KS) #1 to
generate a reduced hypothesis space

~

Multi-Pass Search

® Step 2: Rescore resulting hypothesis space with
Knowledge Source #2.

; Lattice or i Final

Speech N-best List '| Rescoring | output
—

. >
k Recognizer Pass

T-61.184 I/
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Robust Acoustic Modeling
& Adaptation

k T-61.184 I/
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Robust Acoustic Modeling

®" Robust Front-end Processing

O Remove noise from speech

~

1 Design features to be as noise, channel robust as possible

®" Feature Compensation
[ Reduce the observed mismatch between the extracted

features and estimated model parameters

® Acoustic Model Compensation
O Modify acoustic model parameters to closer match the

\_

observed test environment

Automatic Speech Recognition: From Theory to Practice
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Robust Acoustic Modeling

Audio

Noise
Suppression

coustic

A
Model

\_

Noise

| Robust

Feature
Extraction

Model {—

Adaptation

>

Feature
Adaptation

l

~

Search

v

p a4
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