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Announcements

I still need 2 more volunteers to present their 
project topic (next week) on November 22nd

The goal is to present to the class (and myself) 
your chosen topic area.

Brief 10 minute presentation (project overview)

Does not have to reflect your completed project 
(since that is due December 8th).
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Today

How to reduce mismatch between training and 
test conditions to improve recognition reliability

Noise Robustness Techniques

Speaker Adaptation Techniques
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Training vs. Test Mismatch

Performance of speech recognition systems 
degrades whenever there is a mismatch 
between training and test conditions

Mismatch can occur at various levels of 
processing and to various degrees,

Acoustic Modeling
Language Modeling
Pronunciation Modeling
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Acoustic Variability

Environmental
Transducer Microphone frequency response
Channel & Codec Telephone band-limiting, VoIP
Noise Additive, Impulsive, etc.

Speaker
Accent Foreign Accent 
Dialect Regional Differences
Vocal Tract Geometry
Lombard Effect Voice changes due to noise
Age & Gender
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Language Variability

Speaker-Specific
Choice of words is highly speaker-specific
Vocabulary varies speaker-to-speaker

Task-Specific
Topic shifts impact word choices, vocabulary, and 
statistical distributions of words
We can not expect a language model trained on financial 
news to work well when transcribing sports news.
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Impact of Additive Noise 
on Word Error Rate

Train on noise-free data, test on noisy data…
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Multi-Style Training

Train on acoustic data that has been corrupted 
by (1) different noise types, and (2) different 
noise levels.

Works well when all types of operating 
environments are known.  

Can’t always predict the environment; Need 
methods to compensate for noise + channel
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Multi-Style Training

Train on data corrupted by noise of various levels.
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Robust Acoustic Modeling

Robust Front-end Processing
Remove noise from speech
Design features to be as noise, channel robust as possible

Feature Compensation
Reduce the observed mismatch between the extracted 
features and estimated model parameters

Acoustic Model Compensation
Modify acoustic model parameters to closer match the 
observed test environment
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Robust Acoustic Modeling

Audio

Acoustic
Model

Model
Adaptation

Noise
Suppression

Noise
Robust
Feature

Extraction

Feature
Adaptation

Search
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Front-End Noise Suppression
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Scope of the Problem

Error Rate for WSJ Dictation system trained on clean speech 
(Paul & Baker, 1992)
(A) Word Error Rate as a function of SNR for White Noise
(B) Word Error Rate as a function of Microphone Distance

(A) (B)
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Microphone Arrays 

Microphone arrays provide spatial selectivity
Spatial selectivity varies as a function of frequency
Example: Filter-and-sum beam former,
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Noise Suppression

Goal is to reduce the impact of noise on speech

Typical approaches estimate the clean-speech 
magnitude spectrum from the noisy-speech 
magnitude spectrum

Phase of the noisy signal used as the estimate 
of the phase of the clean-speech signal
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Stationary Additive Noise

Relatively constant spectral shape across time

Has a non-uniform impact on speech,
Speech sounds have different spectral shapes across time
Speech sounds have different energy levels across time

Signal-to-noise ratio therefore is a function of 
time even when the noise is additive and 
stationary.
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Original

5dB SNR  Car  Highway Noise

5dB SNR  White Noise
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Additive Noise Model
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Spectral Subtraction

Subtract estimate of noise power spectrum from 
observed (speech+noise) power spectrum

Must ensure that spectral estimate is positively 
valued.

Compute features from estimated clean speech 
power spectrum

{ } )( E)()(ˆ 222
ωωω ttt DYS −=
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Spectral Subtraction Example

(a) Original clean, (b) degraded 10dB WGN, (c) Enhanced

(a)

(b)

(c)
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Improvements from 
Spectral Subtraction

** Many times, these gains are not as significant in real-
world operating environments.  Sometimes spectral
subtraction can degrade ASR performance!



Automatic Speech Recognition: From Theory to Practice 23
T-61.184T-61.184

Wiener Filtering

Estimate optimal Weiner filter and apply to the noisy speech 
spectral magnitudes,

Numerator for filter (H) is unknown, must be estimated.  
Sometimes this is done iteratively using LPC-based models for 
speech as a constraint in the estimation process.

J. H. L. Hansen, M. A. Clements, "Constrained Iterative Speech 
Enhancement With Application to Speech Recognition", IEEE 
Transactions on Signal Processing, Vol. 39, No. 4, pp. 785-805, April, 
1991.
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Minimum Mean-Square Error (MMSE)
Spectral Amplitude Estimation

Estimate the clean speech spectral amplitude 
from corrupted speech using MMSE methods

Y. Ephraim and D. Malah, “Speech Enhancement Using 
Minimum Mean Square Error Short-Time Spectral 
Amplitude Estimator,” IEEE Trans. On Acoustics, Speech, 
and Signal Processing, Vol. 32, No. 6, pp. 1109-1121, 1984

Derived MMSE Estimator:
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Several Issues with 
Speech Enhancement Approaches
Requires estimate of noise to be updated during periods 
of silence (noisy-only regions).  How to do this well?

Most algorithms subtract variable amounts of the noise 
estimate to obtain trade-offs in distortion vs. noise 
attenuation.  How does this impact the ASR engine?

Algorithms developed to improve intelligibility may not 
necessarily improve ASR accuracy. Sometimes worse!

Many speech enhancement algorithms have not been 
formulated to improve ASR accuracy.  Be careful!
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Considering the 
Communication Channel

Communication channels generally act to filter the input 
signal (multiplicative distortion in the frequency domain)

Analog telephone networks band-limit the signal to a 
range of approximately 200Hz to 3400Hz.

Spectral shape of channel can vary from call-to-call, 
sometimes with echo.

Other types of channels,
Voice over IP
Variability due to Microphones
Telephone handset variability (also wireless phones)
Cellular telephony
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Noisy-Channel Model

s(n) h(n)

d(n)

y(n)

s(n): clean speech signal
h(n): channel (telephone, microphone)
d(n): additive noise

)()()()( ndnhnsny +∗=
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Spectral Domain Noisy-Channel Model
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Assuming the speech and noise are statistically independent,
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Robust Feature Extraction
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MFCC Block Diagram
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Robust Feature Extraction

Attempts to compensate for channel and noise 
during feature extraction process

Recall that the typical cepstral parameter 
representation is based on the log-scaled 
outputs of a series of non-linear spaced filters…

Additive Noise will impact the distributions of 
the filterbank values, but how?



Automatic Speech Recognition: From Theory to Practice 32
T-61.184T-61.184

Impact of Noise on 
Mel-Scale Filter banks
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Classic Feature 
Normalization Methods

Cepstral Mean Normalization (CMN)
Mainly compensates for channel (and some noise)

Cepstral Variance Normalization
Mainly compensates for noise

Vocal Tract Length Normalization (VTLN)
Mainly compensates for speaker-differences
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Impact of Noise on 
(Simulated) Cepstral Parameters

Assume noise and clean speech are Gaussianly
distributed in log-spectral domain,

Assume speech with mean=10, variance=5.

Simulate the adding of noise at various levels

( )( ))exp(explog ttt dsy +=
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Impact of Noise on 
(Simulated) Cepstral Parameters

Resulting 
distribution 
initially 
becomes 
bimodal, 
then skewed 
unimodal

Mean shifts

Variance 
decreases 
with 
increasing 
noise level

Image from Liao and Gales (2004)
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Noisy-Channel Model in 
Log-Spectral Domain

Our channel model (k refers to filter bank bin),

In the log-domain,
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Noisy-Channel Model in 
Log-Spectral Domain

Define,

Where C and C-1 are the discrete cosine 
transform (DCT) and inverse DCT.

The cepstral parameters can then be described 
by the following non-linear model,
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Cepstral Mean Normalization

Channel distortion (h) in linear spectral domain 
result in additive distortions in the log-spectral 
(cepstral) domain

Telephone channel differences compensated by 
subtracting the long-term mean from the 
cepstral features
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Variations on CMN

CMN-2
Compute a running mean for the speech and silence 
separately
Detect speech vs. silence and use the appropriate mean

Real-Time Implementations
Running average (typically 5 seconds):
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Cepstral Variance Normalization

Additive noise reduces the variance of cepstral 
features

Compensate by normalizing all feature 
components to have variance of 1.0

Typically, compute standard deviation of 
features over large block of adaptation data.  
Divide features by their standard deviation
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Vocal Tract Length Normalization

Vocal tract lengths vary from speaker to speaker
Influence formant frequency locations
Source of intra-speaker variability

VTLN methods generally warp the speech spectrum as to 
remove variabilities due to vocal tract length

Welling, L., Ney, H., and Kantahak, S. (2002) “Speaker 
Adaptive Modeling by Vocal Tract Normalization,” IEEE 
Transactions on Speech and Audio Processing, Vol. 10, 
No. 6, pp. 415—426, September.
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Uniform Lossless Tube Model 
of Vocal Tract

Formant locations linearly related to tube 
length,

Glottis Lips
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VTLN via Linear Frequency Warping 

inf
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12.1    88.0 ≤≤α



Automatic Speech Recognition: From Theory to Practice 44
T-61.184T-61.184

MFCC with VTLN Block Diagram
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VTLN Implementation

Must determine frequency warp factor (alpha) 
for each speaker in training set

Apply warping during feature extraction, train 
acoustic models

During recognition, must determine optimal 
frequency warp factor for each test speaker



Automatic Speech Recognition: From Theory to Practice 46
T-61.184T-61.184

VTLN During HMM Training

Construct an initial model λ using a single Gaussian 
mixture component for each clustered triphone state

For each training speaker, select a frequency warping 
factor that maximizes the likelihood of the training data  
given the reference transcription

Estimate normalized acoustic models by extracting 
features using speaker-dependent warp factors.  Retrain 
HMMs using standard decision tree method

) W,|(maxarg )( λα α

α
OPs =
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Speaker-Dependent Frequency Warp 
Factors Estimated During Training
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VTLN During Recognition

Perform a first pass recognition using standard acoustic 
models (trained with alpha=1.0).  This provides an initial 
estimate of the word strings.

Select a frequency warping factor that maximizes the 
likelihood of the speaker’s frequency warped features  
given the hypothesized transcription

Perform a second recognition pass using VTLN 
normalized acoustic models with features extracted using 
the speaker-dependent frequency warp factor

) ,Ŵ|(maxarg )( λα α

α
OPs =
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Linear Discriminant Analysis (LDA)

Improve Discrimination via a linear transform on features

Maps a set of input feature vectors (x) of dimension D to a 
set of output feature vectors (y) of dimension D by means 
of a linear transformation θ,

θ chosen to maximize the ratio of between-class scatter to 
within-class scatter given a set of class-labels on the 
training set (x).
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Estimation of LDA Transform

Given a set of vectors assigned to a set of C 
classes, define Scatter-Matrix as,

Where mi is the mean of the ith class.

Define Within-class Scatter,
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Estimation of LDA Transform

Define Between-Class Scatter,

Can be shown that the solution for θ is the 
eigenvectors of the matrix,
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LDA as used in Speech Recognition

Viterbi Align training data using non-LDA system
(associate feature vectors to phone or subphone units)

For 50 phones with 3 states per phone, we might have 50x3 = 
150 classes

Take each training vector (just static 13-D cepstrum) and 
augment it with between 4-8 surrounding vectors.  

Estimate an LDA transform for this extended vector 
representation.

Keep the top N dimensions (based on eigen values) for 
recognition (40-60).  

Retrain the acoustic models with this new feature 
representation.
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Acoustic Model Adaptation
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Acoustic Model Adaptation

For HMM states modeled with Gaussian 
distributions, Model Adaptation Methods 
attempt to shift the means and variances of 
Gaussians to better match the input feature 
distributions

Example Techniques,
Parallel Model Combination (PMC)
Maximum Likelihood Linear Regression (MLLR)
Maximum A Posteriori (MAP) Adaptation
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Parallel Model Combination (PMC)

Acoustic model compensation for additive and 
convolutional noise sources

Assumes
HMMs trained on clean speech
Typically assumes noise is stationary and modeled using 1 
HMM state

A clever approach that modifies the (static) 
cepstral means of modeled Gaussians
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Parallel Model Combination (PMC)

Basic Idea,

Convert each HMM cepstral mean vectors from
log-spectral domain to linear spectral domain.  

Add noise spectrum estimate to clean speech spectrum 
from the acoustic model

Convert new noisy-speech spectrum back to cepstral 
domain to get compensated HMM model mean vectors
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Parallel Model Combination (PMC)

M.J.F. Gales and 
S.J. Young (1995).
“Robust Speech 
Recognition in 
Additive and 
Convolutional
Noise using Parallel 
Model 
Combination.”
Computer Speech 
and Language 
Volume 9. 
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Maximum Likelihood Linear 
Regression (MLLR)

Model adaptation technique which estimates 
new values for the Gaussian mean vectors via a 
linear transform

The linear transform is estimated from labeled 
training data (features and their state 
alignments)

M.J.F. Gales and P.C. Woodland (1996), “Mean and 
Variance Adaptation within the MLLR Framework,” 
Computer Speech and Language Volume 10. 
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Maximum Likelihood Linear 
Regression (MLLR)

Estimates a linear transform matrix (A) and bias 
vector (b) to transform HMM model means:

Transform estimated to maximize the likelihood 
of the adaptation data
Speech sounds can be clustered into a set of  
regression classes.
Transform applied to all Gaussians within the 
same regression class.

roldrnew bA += µµ
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MLLR Variance Adaptation

Can also adapt the Gaussian variances under 
the MLLR framework (Gales & Woodland, 1997)

Variance adaptation provides only minor benefit 
as a technique for speaker adaptation

2-7%% relative reduction in WER

For speech recognition in noisy environments, 
adaptation of variances provides more benefit

Assists in compensating for variance reduction due to 
noise
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Iterative Unsupervised MLLR

Typically MLLR is applied in an iterative, and 
unsupervised manner,

Typical error reductions on the order of 15-20% relative

Recognition

HMMs

speech
word hypothesis,
segmentation

MLLR
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Word Error Rate vs. MLLR Iteration

Convergence is generally reached after 2-5 iterations of 
decoding followed by MLLR adaptation.

Phoneme Recognition (Italian Children’s Speech):

First-Pass (WER) 18.1%
MLLR Iter #1 16.0%
MLLR Iter #2 15.3%
MLLR Iter #3 14.9%
MLLR Iter #4 14.7%
MLLR Iter #5 14.6%

19.3% 
Relative

Error
reduction
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Maximum A Posteriori Adaptation 
(MAP)

MAP Adaptation can only be applied Gaussians 
that are “seen” in the test data,
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MAP vs. MLLR

MLLR Adaptation preferred over MAP for sparse 
adaptation sets

MAP only re-estimates “seen” data components
Can estimate Block-Diagonal MLLR transforms

As adaptation data increases, 
MAP generally outperforms MLLR
Why? MLLR based on a fixed set of regression classes

Can combine MAP+MLLR
Apply MLLR first,
Adapt “seen” Gaussians with MAP approach given sufficient data
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Performance of MLLR and MAP

Speaker independent

Speaker dependent
MAP

MLLR

MLLR+MAP

Number of Adaptation Utterances
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Constrained MLLR (CMLLR)

A variation on MLLR

Transform can be applied to the features rather 
than to the model Gaussians

Typically both CMLLR and MLLR are applied 
together for added benefit
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Speaker Adaptive Training (SAT)

Attempts to remove speaker-specific 
characteristics from the training data to build 
robust speaker-independent models

SAT using Feature-Space CMLLR Transforms, 
Train standard acoustic models
Estimate CMLLR feature transform for each training 
speaker (use models from step #1)
Transform each speaker’s features using speaker-
dependent CMLLR transform
Retrain acoustic models
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Benchmarking “Robust” Systems

DARPA SPINE
“Speech Processing in Noisy Environments (SPINE)”
University and Commercial Several participants in 2001-2002
Human-to-Human Dialogs in various noisy environments
3,000 word vocabulary
Word Error Rates ranging from 20-50%

AURORA
Popular in several of the last speech conferences
End Goal: A standard for Distributed Speech Recognition
Attempts to compare systems using same database and 
recognizer, but allow researchers to propose new front-ends
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What to Expect from Adaptation

Most techniques are used in combination

Typical Research System might use,
CMN+CVN+LDA(HLDA)+VTLN+MLLR+CMLLR
Speech Enhancement front-ends seem less common

Typical Relative Error Reductions
Cepstral Mean Normalization ~ 5 %
Cepstral Variance Normalization ~ 5 %
LDA: 10 15%
VTLN: 5 10%
MLLR: (unsupervised) 15 20% 

(supervised) 25 35%
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Next Week

A few words about hypothesis combination

ASR Course Review for 30 minutes

Initial (Short) Project Presentations
10 minutes presentation about your project


