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Course Announcements

Exercise #5 has been posted on the website.  If you have 
successfully completed Exercises 1-4 with full credit, 
then this is Exercise is optional.  Send me email if you 
have any questions if this is optional or not for you.

If you need 0.5 points to complete 4/5 excercises, then 
you can solve 2 out of the 4 problems on Exercise #5.

Course presentations will be 10 minutes per project 
group.  I need 4 volunteers for November 22nd.  The 
remaining 8 projects will be presented on November 29th.

The course schedule has been updated on the web page.
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References for Today’s Material

M. Ravishankar, “Efficient Algorithms for Speech Recognition,” 
Ph.D. thesis, Carnegie Mellon University, 1996.

W. Daelemans, A. van der Bosch, “Language-Independent Data-
Oriented Grapheme to Phoneme Conversion,” In Progress in 
Speech Synthesis, Ed. J. Van Santen, R. Sproat, J. Olive, J. 
Hirschberg, pp. 77-88, 1997.

Black, Lenzo, and Pagel, "Issues in Building General Letter to 
Sound Rules," for the 1998 ESCA Speech Synthesis Workshop, 
Jenolan Caves, Blue Mountains, Australia.   

R. Damper, Y. Marchard, M. Adamson, K. Gustafson, 
“Comparative Evaluation of Letter-to-Sound Conversion 
Techniques for English Text-to-Speech Synthesis,” Proc. The 
3rd ESCA / COCOSDA Workshop on Speech Synthesis, 1998. 
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(Review from Last Time) 
Lexical Prefix Tree Search
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Lexical Prefix Tree Search

As vocabulary size increases:

Number of states needed to represent the flat search 
network increases linearly

Number of cross-word transitions increases rapidly

Number of language model calculations (required at word 
boundaries) increases rapidly

Solution: Convert Linear Search Network into a 
Prefix Tree.
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Lexical Prefix Tree

* Figure adapted from Huang et al., Spoken Language Processing, Prentice Hall

B(?,EY)

EY(B,KD)

EY(B,K)

KD(EY,?)

KD(EY,TD)

BAKE

BAKED

K(EY,IX)

K(EY,AXR)

IX(K,NG) NG(IX,?)

AXR(K,?)

AXR(K,IY) IY(AXR,?)

BAKING

BAKER
BAKERY

TD(KD,?)
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Leaf Node Construction

Leaf Nodes ideally should have unique word 
identity

Allows for efficient application of language 
model

Handles instances such as,
When word is the prefix of another word [“stop”, “stops”].
Homophones like “two” and “to”.
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Leaf Node Construction

T(?,UW)

UW(T,?)

UW(T,?)

TO

TOO

S(?,T) T(S,AA)

STOP

AA(T,P)

P(AA,?)

STOPS
P(AA,S) S(P,?)
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Advantages of Lexical Tree Search

High degree of sharing at the root nodes 
reduces the number of word-initial HMMs 
needed to be evaluated in each frame

Reduces the number of cross-word transitions

Number of active HMM states and cross-word 
transitions grow more slowly with increasing 
vocabulary size
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Advantages of Lexical Tree Search

Savings in the number of nodes in the search 
space [e.g., 12k vocabulary, 2.5x less nodes].

Memory savings; fewer paths searched

Search effort reduced by a factor of 5-7 over 
linear lexicon [since most effort is spent 
searching the first or second phone of each 
word due to ambiguities at word boundaries].
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Comparing Flat Network and Tree 
Network in terms of # of HMM states
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Speed Comparison between 
Flat and Tree Search

CMU Sphinx-II : Speed Improvements of tree 
search compared to flat search for 20k and 58k 
word vocabularies [speed is about 4-5x faster!]

Accuracy is about 20% relative worse for tree 
search.
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Disadvantages of Lexical Tree

Root nodes model the beginnings of several words which 
have similar phonetic sequences

Identity of word not known at the root of the tree

Can not apply language model until tree represents a 
unique word identity.  “Delayed Language Modeling”

Delayed Language Modeling implies that pruning early on 
is based on acoustics-alone.  This generally leads to 
increased pruning errors  and loss in accuracy
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Multi-Pass Search,
N-Best Lists,

Word-Lattices & Graphs
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First-Pass Recognition Output

N-best List
List of N most probable word sequences

Word Lattice
Representation in which each word is represented by a 
score and a time-interval

Word Graph
Finite state automata in which arcs are labeled with words 
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Example N-best List
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Word Lattice Representation

More compact compared to N-best lists

Minimally Encodes:
Word Identity
Time-interval for word
acoustic score the word
(sometimes) total path score
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Word Lattice Representation
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Lattices and N-Best Lists

Provide a lower-bound on word-error rate.
Given the anticipated correct word string we can compute 
a “lattice-error rate” or “n-best list error rate”.  
Lowest error rate which can be possibly obtained with the 
knowledge source.

Density
We often talk of “lattice-density”: number of hypotheses or 
word-arcs per uttered word
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Multi-pass Search Methods

Some knowledge sources increase the complexity of 
search,

Higher order n-gram language models (N > 3)
Cross-word acoustic models [remember fan-out issue]
Longer-context acoustic models [beyond triphone]
Pronunciation Models

Multi-pass methods reduce search space by first using 
“simple-to-compute” acoustic or language models and 
then later “rescore” remaining hypotheses with more 
complex knowledge sources
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Multi-Pass Search

Step 1: Use Knowledge Source (KS) #1 to 
generate a reduced hypothesis space

Step 2: Rescore resulting hypothesis space with 
Knowledge Source #2.

Speech
Recognizer

KS1

Rescoring
Pass

KS2

Lattice or
N-best Listspeech

Final 
output
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One Method for 
Word Graph Generation

Each word instance in the word lattice is 
represented by a pair (w,t)

w is the word-id
t is the begin frame of the word

Each word can have a series of possible end-
frames for each single begin time

Create an edge from (wi,ti) to (wj,tj) iff tj-1 is one 
of the possible end-times of (wi,ti) 
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Word Graph Generation 
from Word Lattice

I

HAVE

AND

time

A
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Word Graph Example
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N-best List Rescoring

Use standard token-passing using a 2-gram 
language model & word-internal acoustic 
models

Compute N-best list ( 10 < N < 500 )

Resort N-best list
Recompute sentence probability using cross-word 
acoustic models and 3-gram language model

Pick top sentence as final hypothesis
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Word Graph Rescoring

Use standard token-passing using a 2-gram 
language model & cross-word acoustic models

Convert word lattice into a word-graph

Rescore the elements in the word graph using 
3-gram language models.  [replace 2-gram LM 
scores with 3-gram LM scores].

Find new best-path word string through graph
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Why Does N-best List and 
Word-Graph Rescoring Work?

Has to do with the sub-optimality of the Viterbi search 
with n-gram LMs (following Ravishankar (1996)):

Initially, P(w4|w2,w1) is much greater than P(w4|w3,w1).  
So, the path from w3,w4 may be pruned away.

As the search proceeds, we might discover that 
P(w5|w4,w3) is much more likely than P(w5|w4,w2).  
Although this better path has been pruned away!

W1

W2

W3

W4 W5
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Multi-pass Search Criticisms

Not Suitable for real-time applications
Second pass search can not start until the user stops 
speaking

Argument:
Second pass operations tend to be extremely fast since 
search space is minimized.  
Minimal delay experienced by the user.
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Multi-pass Search Criticisms

Introduces Inadmissible Pruning
Decisions in early search pass made using simple 
acoustic and language models
Correct hypothesis can be accidentally pruned  early-on

Argument:  
Even a problem in one-pass methods
Since one-pass methods use beam search which is a form 
of inadmissible search
Search errors can be minimized by careful choice of 
pruning thresholds.
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Arguments for Multi-Pass Search

Incorporation of higher order knowledge 
sources

Search space reduction for very large 
vocabularies

Spoken Language Understanding

Offline Development of ASR modules
(rescoring is quick and convenient way to test 
new ideas)
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Measuring ASR Performance & 
Practical Optimization Issues
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Measuring ASR Performance

Substitution Errors
Recognizer confuses word ‘a’ for word ‘b’

Deletion Errors 
Recognizer does not output an expected word

Insertion Errors
Recognizer outputs an extra word not spoken
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NIST sctk-1.2 scoring software
http://www.nist.gov/speech/tools/

Alignment# 84 for speaker sls
id: (sls-20000629-006-001)
Scores: (#C #S #D #I) 8 0 2 0
REF:  i'd like to go TO st louis on september SEVENTH 
HYP:  i'd like to go ** st louis on september ******* 
Eval:                D                        D       

Alignment# 90 for speaker sls
id: (sls-20000629-006-007)
Scores: (#C #S #D #I) 2 1 0 1
REF:  ** no THAT'S incorrect 
HYP:  NO no NO     incorrect 
Eval: I     S 
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Typical Outputs for 
Scoring Software

SentenceCorrect in   wordsNo.
InsDelsSubs No.  100%  RateError  Word ++

×=

SentenceCorrect in   wordsNo.
rdsCorrect wo No.  100% Correct % ×=

SentenceCorrect in   wordsNo.
onsSubstituti No.  100% Subs % ×=

SentenceCorrect in   wordsNo.
Insertions No.  100% Ins % ×=
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Example output from 
Sclite (sctk-1.2)

Input (1): Reference transcription with key 
identifier surrounded by parentheses:

Input (2): Hypothesis from recognizer with key 
identifier for each sentence [like reference]

START OVER (sls-20000621-006-009)
TO GO TO LOS ANGELES (sls-20000628-003-001)
PITTSBURGH (sls-20000628-003-002)
OCTOBER TWENTY THIRD (sls-20000628-003-003)
LATE MORNING AFTER NINE (sls-20000628-003-004)
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Example Output from Sclite (sctk-1.2)

Scoring: sclite –i wsj –r ref.txt –h hyp.txt

| SPKR   | # Snt # Wrd | Corr Sub    Del    Ins    Err  S.Err |
|--------+--------------+-----------------------------------------|
| sls |  789    2009 | 88.8    7.4    3.9    1.6   12.8   15.2 |
|=================================================================|
| Sum/Avg|  789    2009 | 88.8    7.4    3.9    1.6   12.8   15.2 |
|=================================================================|
|  Mean  |789.0  2009.0 | 88.8    7.4    3.9    1.6   12.8   15.2 |
|  S.D.  |  0.0    0.0  |  0.0    0.0    0.0    0.0    0.0    0.0 |
| Median |789.0  2009.0 | 88.8    7.4    3.9    1.6   12.8   15.2 |
`-----------------------------------------------------------------'

Speaker Name Overall Word Error Rate
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How to Calculate Word Error Rates?

An algorithm is shown on page 421 of the book 
“Spoken Language Processing” by Acero et al.

Algorithm based on dynamic programming

Define correct word string as,

Define hypothesized word string as,
nwww 21 L

mŵŵŵ 21 L
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How to Calculate Word Error Rates

Define R[i,j] as the minimum error of aligning 
the two substrings:

B[i,j] is a back pointer used to recover error 
types

Initialization: 
0)(jor  0)(i if  j][i,

        ;0[0,0]
<<∞=

=
R
R

nwww 21 L
mŵŵŵ 21 L
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How to Calculate Word Error Rates
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R[i,j] Computation Example

R[3,4]=
2

R[3,3]=
2

R[3,2]=
2

R[3,1]=
2

R[2,4]=
3

R[2,3]=
2

R[2,2]=
1

R[2,1]=
1

R[1,4]=
3

R[1,3]=
2

R[1,2]=
1

R[1,1]=
0

NO NO NO INCORRECT

NO

THAT’S

INCORRECT

Hypothesis

R
ef

er
en

ce
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B[i,j] Computation Example

NO NO NO INCORRECT

NO

THAT’S

INCORRECT

Hypothesis

R
ef

er
en

ce

M=3S=4S=4D=1

S=4S=4S=4D=1

I=2I=2I=2M=3
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Calculating Word Error Rates

Error sequence (correct, subs, del, insertions) can be 
recovered by back-tracing through B[i,j] terms.  

There can be multiple back traces with equal error rate!!!  
All give same number of errors, but different string 
alignments!

It’s not as easy as it may seem!  
Use standard tools like NIST’s sclite when possible.

n
mnR% ],[100  rateerror    word ×=
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Alternative Computation of R[i,j]

Use this scale to update R[i,j] and B[i,j].  Use B[i,j] to 
decode the insertions, subs, deletions.  
Count the number of errors and divide by the number of 
words in the correct sentence.
This cost function is used by the NIST Sclite scoring 
package.
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Optimization of Recognizers

Requires deep understanding of how the 
recognizer operates, some intuition as well.

Several parameters, each influence each other

Difficult to exhaustively search for the best 
settings (LM scale factor, insertion penalty, 
beams).

Requires optimization on a development test 
set.  DO NOT USE YOUR FINAL TEST SET!
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Remember…

Viterbi Path contains acoustic and scaled language model 
score with a word-transition penalty,

Path scores are maintained by tokens (token-pass 
search).  At each frame, tokens are pruned by comparing 
the token’s path score to the best token’s score (minus a 
search beam).  

( ){ })()W|O(logmaxargŴ
W

WPP=

( ) ( )












+⋅+=
44 344 214434421

model languagemodel  acoustic

pP(W)logs)W|O(logmaxargŴ P
W
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Viterbi Beam Search Settings

Wide beam:
Prunes fewer competing hypotheses
Slower search since more paths explored
(sometimes) Fewer deletion errors; more insertion errors

Narrow beam:
Faster search since fewer paths are explored
(sometimes) More deletion errors; fewer insertion errors
(sometimes) More substitution errors as correct path may 
be pruned away during search
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Language Model Scaling Factor

Increasing the language model scale factor 
reduces the influence of the acoustic models in 
the selection of the final word sequence.

As LM scale factor is increased:
More deletion errors (since there is an increased penalty 
for transitioning between words)
Fewer insertion errors
Need wider beams!  (since path scores will become larger)
Less influence of acoustic model observation probabilities
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Word Insertion Penalty

Can be used to control the trade-off between insertion 
and deletion errors

As penalty becomes larger (more negative),
More deletion errors
Fewer insertion errors

Some recognizers include a “short-word transition 
penalty” for words which contain few phonemes.

Positive values of this type of transition penalty are used 
to reduce deletions of short words
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Speed Optimization

~80% of the state hypotheses being searched 
are in the first phoneme of words in a medium-
sized vocabulary recognition task.

Word initial positions are searched quite often
due to the ambiguities at word boundaries

Efforts to reduce word-initial state explorations 
will improve the speed of a speech recognizer.
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Phonetic Fast Match

Look ahead “N” frames and determine which 
phonemes are currently “active”.

Do not search states involving those “in-active” 
phonemes.

How to determine which phonemes are active in 
the upcoming frames?
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“THIS” = DH IH S
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Phonetic Fast Match 
(CMU Sphinx-II Approach)

Frame likelihoods are computed for each 
phoneme from context-independent HMM states 
Cross-HMM and Cross-Word transitions are 
only allowed for phonemes labeled as active.
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Expected Gains from Fast-Match

Ravishankar (1996) 
CMU Sphinx-II recognizer.
3-frame look-ahead
20k and 58k word vocabulary system 
45% reduction in execution time 
2% relative increase in word error

Gopolakrishan (ICASSP, 1994) 
IBM recognizer 
Almost 50% reduction in execution time 
10% relative increase in word error rate.
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Grapheme-to-Phoneme Conversion Methods 
for Speech Recognition Lexicon 

Development

(A problem for researchers in text-to-
speech synthesis and automatic speech 

recognition)
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Lexicon Development for ASR

Quality of the pronunciations of words will directly impact 
the speech recognition error rate. 

Unlike Finnish, many languages there is a less-then-
obvious mapping between letters and sounds

In English we have many issues,
Pronunciation of Proper Names 
(Streets, First/Last Names, Places)
Pronunciation of infrequent words, task-dependent vocabularies
CMU Pronouncing Dictionary for English (125,000 words)

What to do when word is not part of the dictionary?
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Problem Complexity

In some languages (Spanish, Greek, Turkish, 
Finnish) the association of text to phonemes 
can be described by a very small set of rules

English poses many problems:

S P E  E C  H  
S P IY _ CH _
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Some Pronunciation Generation 
“Tricks” for English

Method 1: Morphological Analysis
Ericson; McDonald; Ivanovich (-son, Mc-, -ovich)

Method 2: Pronunciation by Analogy
Can be applied to names 
(e.g., Trotsky in dictionary but Plotsky is not)
Words that share the same final letter sequence are 
assumed to rhyme.
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If all else fails?

Generate the pronunciation by hand
Not possible for text-to-speech synthesis systems
Doable for speech recognition systems

Can consider automated methods

Two basic “automated” approaches
Rule-based     (Letter-to-Sound Rules)
Data-driven     (Letter-to-Sound Predictive Model)
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Rule-Based Methods

Develop a set of rules by hand to account for 
letter-to-sound conversion

A[B]C D

Multiple rules tend to apply to same string

Must apply them in a specific order (most 
specific at the top, most general at the bottom)
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Comparison of Existing Methods
(Damper et. al, 1998) 

Phonological Rules
Hand-crafted letter-to-sound rules
Elovitz, IEEE Trans. ASSP, Vol 24:446-459, 1976.

NetSpeak
Neural Network; Coded letter context as input
25 output features to represent the target phone

Nearest-Neighbor (1B1-IG)
Feature weighting function used to provide a real-valued weight for 
feature values (letter positions)
Compute similarity between new instance and all stored instances; return 
the class label of the most similar instance.

Pronunciation by Analogy
Pronunciation of an unknown is assembled by matching substrings of the 
input to substrings of known words
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Comparison of Existing Methods
(Damper et. al, 1998) 

Phonological Rules 25.7% correct
NetSpeak 46.0% correct
1B1-IG (Nearest Neighbor) 57.4% correct
Pronun. by Analogy 71.8% correct

Hand-driven phonological rules always under
performed the data driven methods *significantly*.
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Automated Method

AlignmentAlignment

Machine
Learning
Machine
Learning

Map Letters to Phones

Decision Tree, Neural Net,
Support Vector Machine, etc.

Lexicon

Feature Vector
Generation

Feature Vector
Generation

Feature Vector of Contexts
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Letter-to-Phone Alignment

Number of letters in a word and the number of 
phones is not a one-to-one match

Generally, each letter might map to 0, 1, 2, and 
sometimes 3 phones.

Less phones than letters in most cases with 
some exceptions:

X /k s/ in “extra”
O /w uh/ in “one”
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Example Candidate Alignments

Letter-to-Phone alignments become training 
data for our automatic classifier.

SPEECH S P IY CH

S P  E   E  C   H
S P  IY  _  CH  _
S P  IY  _  _  CH
S P  _  IY  _  CH
S P  _  IY  CH  _
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Hand-Seeded Candidate Alignments

Improve candidate alignments by pre-
determining which phonemes each letter can 
map onto.

For example, the letter “c” 
_epsilon_ (e.g., “muscle”)
K, CH, S, SH, T-S (e.g., “church”)

Vowel letters can have a longer list of potential 
phonemes
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Algorithm Initialization

For each word in the dictionary, generate all 
possible alignments of letters to phones 
considering various epsilon placements

Determine probability of aligning letter l with 
phone p for all l and p.

)(
)()|(

l

ll
ll letterCount

phoneletterCountletterphoneP →
=
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Determining the Best Alignment

Input to algorithm is a word containing letters 
and the associated phonemic sequence

Generate all possible candidate alignments 
including the epsilon symbol

Score each possible alignment and choose the 
most probable alignment for each word,

∏
=

=
L

l
ll letterphonePS

1

)|(
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Alignment Results in 
Letter-to-Phoneme Mapping

ABSORBED  AX B Z AO R BD _ DD
ABSORBENCY  AX B Z AO R B AX N S IY
ABSORBENT  AX B Z AO R B AX N TD
ABSORBER  AX B Z AO R B _ AXR
ABSORBERS  AX B Z AO R B _ AXR Z
ABSORBING  AX B Z AO R B IX _ NG
ABSORBS  AX B Z AO R B Z
ABSORPTION  AX B S AO R P _ SH AX N
ABSTAIN  AE B S T EY _ N
ABSTAINED  AE B S T EY _ N _ DD
ABSTAINING  AE B S T EY _ N IX _ NG
ABSTENTION  AE B S T EH N CH _ AX N
ABSTENTIONS AE B S T EH N CH _ AX N Z
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Feature Vector Generation

- - - A B B R AX
- - A B B R E B
- A B B R E V _
A B B R E V I R
B B R E V I A IY
B R E V I A T V
R E V I A T I IY
E V I A T I N EY
V I A T I N G DX
I A T I N G – IX
A T I N G - - _
T I N G - - - NG

“Abbreviating AX B _ R IY V IY EY DX IX _ NG”

6 Letter
Context
Window

Output
Target
Phone

L3 L2 L1 L R1 R2 R3
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Potential Machine Learning Algorithms

Neural Network
Input to NN : coded versions of letters 

(with 3-letter surrounding context)
Output of NN : vector of probabilities 

for selecting one of N phonemes

Support Vector Machine
Decision Tree

Input    : letter context 
(center letter plus 3 letters to left and right)

Output : phoneme symbol prediction (possibly epsilon)
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Resulting Decision Tree (L=‘C’)
R1=‘A’?

Y

L1=‘A’?
Y N

L2=‘F’?

“S”

L2=‘R’?

Y
N

Y

N

N
L3=‘U’?

Y
N

“S” “K”

“K”
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Evaluating the Decision Tree

Feature L3 L2 L1  L R1 R2 R3
Input Letters ?   F  A  C  A  ?  ?

Output Phoneme is “S”

Example Decision Tree Evaluation
for the Word “Façade”
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Tree Size vs. % Correct

3950074.6%95.8%1

3036869.4%94.9%2

2291267.2%94.4%3

1794865.2%94.0%4

1496863.1%93.7%5

1278261.6%93.4%6

988459.6%92.9%8

Tree
Size

Words 
Correct

Letters 
Correct

Minimum # 
of Examples
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DT Performance for 
English, French, and German

89.4%98.8%DE-CELEX
(German)

93.0%99.0%BRULEX
(French)

57.8%92.0%
CMUDICT
(American English)

74.6%95.8%OALD
(British English)

Words
Correct

Letters
Correct

Lexicon

** words with less than 4-letters were removed from test
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Does it Really Work Well?  
Probably Not for English!

SONIC Speech Recognition System
Wall Street Journal 20k-word vocabulary
DARPA Nov. 1992 test set

Compare word error rate for system designed with hand-
driven pronunciations vs. one with completely automatic 
pronunciations (DT method).

Word Error Rate with Hand-Driven Pronunciations
9.6%     (8.5% after adaptation)

Word Error Rate with Decision-Tree Pronunciations
41.2%    (38.2% after adaptation)
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Next Time

Some discussion and comparison of available 
speech recognition systems

Some discussion about tools used in the field 
and trends in development of open-source 
components for speech recognition


