# T-61.184 Automatic Speech Recognition: From Theory to Practice

http://www.cis.hut.fi/Opinnot/T-61.184/ November 1, 2004

#### **Prof. Bryan Pellom**

Department of Computer Science Center for Spoken Language Research University of Colorado

#### pellom@cslr.colorado.edu

**T-61.184** 

Automatic Speech Recognition: From Theory to Practice

## **Course Announcements**

- Exercise #5 has been posted on the website. If you have successfully completed Exercises 1-4 with <u>full credit</u>, then this is Exercise is optional. Send me email if you have any questions if this is optional or not for you.
- If you need 0.5 points to complete 4/5 excercises, then you can solve 2 out of the 4 problems on Exercise #5.
- Course presentations will be 10 minutes per project group. I <u>need 4 volunteers</u> for November 22<sup>nd</sup>. The remaining 8 projects will be presented on November 29<sup>th</sup>.
- The course schedule has been updated on the web page.

Automatic Speech Recognition: From Theory to Practice

## **References for Today's Material**

- M. Ravishankar, "Efficient Algorithms for Speech Recognition," Ph.D. thesis, Carnegie Mellon University, 1996.
- W. Daelemans, A. van der Bosch, "Language-Independent Data-Oriented Grapheme to Phoneme Conversion," In Progress in Speech Synthesis, Ed. J. Van Santen, R. Sproat, J. Olive, J. Hirschberg, pp. 77-88, 1997.
- Black, Lenzo, and Pagel, "Issues in Building General Letter to Sound Rules," for the 1998 ESCA Speech Synthesis Workshop, Jenolan Caves, Blue Mountains, Australia.
- R. Damper, Y. Marchard, M. Adamson, K. Gustafson, "Comparative Evaluation of Letter-to-Sound Conversion Techniques for English Text-to-Speech Synthesis," *Proc. The* 3rd ESCA / COCOSDA Workshop on Speech Synthesis, 1998.

Automatic Speech Recognition: From Theory to Practice

# (Review from Last Time) Lexical Prefix Tree Search

Automatic Speech Recognition: From Theory to Practice

## **Lexical Prefix Tree Search**

#### As vocabulary size increases:

- Number of states needed to represent the flat search network increases linearly
- □ Number of cross-word transitions increases rapidly
- Number of language model calculations (required at word boundaries) increases rapidly

#### Solution: Convert Linear Search Network into a Prefix Tree.



## Leaf Node Construction

- Leaf Nodes ideally should have unique word identity
- Allows for efficient application of language model
- Handles instances such as,
   When word is the prefix of another word ["stop", "stops"].
   Homophones like "two" and "to".



## **Advantages of Lexical Tree Search**

- High degree of sharing at the root nodes reduces the number of word-initial HMMs needed to be evaluated in each frame
- Reduces the number of cross-word transitions
- Number of active HMM states and cross-word transitions grow more slowly with increasing vocabulary size

Automatic Speech Recognition: From Theory to Practice

## **Advantages of Lexical Tree Search**

- Savings in the number of nodes in the search space [e.g., 12k vocabulary, 2.5x less nodes].
- Memory savings; fewer paths searched
- Search effort reduced by a factor of 5-7 over linear lexicon [since most effort is spent searching the first or second phone of each word due to ambiguities at word boundaries].

# Comparing Flat Network and Tree Network in terms of # of HMM states

|       |       | 58K   |       |
|-------|-------|-------|-------|
| Level | Tree  | Flat  | Ratio |
| 1     | 851   | 61657 | 1.4%  |
| 2     | 5782  | 61007 | 9.5%  |
| 3     | 18670 | 57219 | 32.6% |
| 4     | 26382 | 49390 | 53.4% |
| 5     | 24833 | 38254 | 64.9% |
| 6     | 18918 | 26642 | 71.0% |
| 7     | 13113 | 17284 | 75.9% |
| 8     | 8129  | 10255 | 79.3% |

# Speed Comparison between Flat and Tree Search

| Task | Dev93 | $D\epsilon v94$ | Eval94 | Mean |
|------|-------|-----------------|--------|------|
| 20K  | 4.8   | 4.7             | 4.7    | 4.7  |
| 58K  | 5.2   | 4.8             | 4.5    | 4.9  |

CMU Sphinx-II : Speed Improvements of tree search compared to flat search for 20k and 58k word vocabularies [speed is about 4-5x faster!]

Accuracy is about 20% relative worse for tree search.

## **Disadvantages of Lexical Tree**

- Root nodes model the beginnings of several words which have similar phonetic sequences
- Identity of word not known at the root of the tree
- →Can not apply language model until tree represents a unique word identity. "Delayed Language Modeling"
- → Delayed Language Modeling implies that pruning early on is based on acoustics-alone. This generally leads to increased pruning errors and loss in accuracy

Automatic Speech Recognition: From Theory to Practice

# Multi-Pass Search, N-Best Lists, Word-Lattices & Graphs

Automatic Speech Recognition: From Theory to Practice

## **First-Pass Recognition Output**

#### N-best List

□ List of N most probable word sequences

#### Word Lattice

Representation in which each word is represented by a score and a time-interval

## Word Graph

□ Finite state automata in which arcs are labeled with words

# **Example N-best List**

1. I will tell you would I think in my office 2. I will tell you what I think in my office 3. I will tell you when I think in my office 4. I would sell you would I think in my office 5. I would sell you what I think in my office 6. I would sell you when I think in my office 7. I will tell you would I think in my office 8. I will tell you why I think in my office 9. I will tell you what I think on my office 10. I Wilson you I think on my office

## **Word Lattice Representation**

More compact compared to N-best lists

#### Minimally Encodes:

□ Word Identity

□ Time-interval for word

□ acoustic score the word

□ (sometimes) total path score

# **Word Lattice Representation**

|  | will   | tell | you | what  | think | in | my         | office |
|--|--------|------|-----|-------|-------|----|------------|--------|
|  | would  | sell |     | when  |       |    |            |        |
|  | Wilson |      |     | why   |       |    |            |        |
|  |        |      |     | would |       |    |            |        |
|  |        |      |     |       |       |    |            |        |
|  |        |      |     |       |       |    |            |        |
|  |        |      |     |       |       |    | <b>T-6</b> | 1.184  |

## **Lattices and N-Best Lists**

#### Provide a lower-bound on word-error rate.

- □ Given the anticipated correct word string we can compute a "lattice-error rate" or "n-best list error rate".
- Lowest error rate which can be possibly obtained with the knowledge source.

#### Density

We often talk of "lattice-density": number of hypotheses or word-arcs per uttered word

Automatic Speech Recognition: From Theory to Practice

## **Multi-pass Search Methods**

Some knowledge sources increase the complexity of search,

□ Higher order n-gram language models (N > 3)

□ Cross-word acoustic models [remember fan-out issue]

□ Longer-context acoustic models [beyond triphone]

Pronunciation Models

Multi-pass methods reduce search space by first using "simple-to-compute" acoustic or language models and then later "rescore" remaining hypotheses with more complex knowledge sources

Automatic Speech Recognition: From Theory to Practice

## **Multi-Pass Search**

- Step 1: Use Knowledge Source (KS) #1 to generate a reduced hypothesis space
- Step 2: Rescore resulting hypothesis space with Knowledge Source #2.



# One Method for Word Graph Generation

Each word instance in the word lattice is represented by a pair (w,t)

□ w is the word-id

□ t is the *begin frame* of the word

- Each word can have a series of possible endframes for each single begin time
- Create an edge from (w<sub>i</sub>,t<sub>i</sub>) to (w<sub>j</sub>,t<sub>j</sub>) iff t<sub>j</sub>-1 is one of the possible end-times of (w<sub>i</sub>,t<sub>i</sub>)

Automatic Speech Recognition: From Theory to Practice





## **N-best List Rescoring**

- Use standard token-passing using a 2-gram language model & word-internal acoustic models
- Compute N-best list (10 < N < 500)</p>
- Resort N-best list

Recompute sentence probability using cross-word acoustic models and 3-gram language model

#### Pick top sentence as final hypothesis

## **Word Graph Rescoring**

- Use standard token-passing using a 2-gram language model & cross-word acoustic models
- Convert word lattice into a word-graph
- Rescore the elements in the word graph using 3-gram language models. [replace 2-gram LM scores with 3-gram LM scores].
- Find new best-path word string through graph

Automatic Speech Recognition: From Theory to Practice

# Why Does N-best List and Word-Graph Rescoring Work?

Has to do with the <u>sub-optimality</u> of the Viterbi search with n-gram LMs (following Ravishankar (1996)):



- Initially, P(w4|w2,w1) is much greater than P(w4|w3,w1). So, the path from w3,w4 may be pruned away.
- As the search proceeds, we might discover that P(w5|w4,w3) is much more likely than P(w5|w4,w2). Although this better path has been pruned away!

T-61.184

Automatic Speech Recognition: From Theory to Practice

## **Multi-pass Search Criticisms**

#### Not Suitable for real-time applications

Second pass search can not start until the user stops speaking

### Argument:

- Second pass operations tend to be extremely fast since search space is minimized.
- □ Minimal delay experienced by the user.

# **Multi-pass Search Criticisms**

#### Introduces Inadmissible Pruning

Decisions in early search pass made using simple acoustic and language models

□ Correct hypothesis can be accidentally pruned early-on

#### Argument:

- Even a problem in one-pass methods
- Since one-pass methods use beam search which is a form of inadmissible search
- Search errors can be minimized by careful choice of pruning thresholds.

## **Arguments for Multi-Pass Search**

- Incorporation of higher order knowledge sources
- Search space reduction for very large vocabularies
- Spoken Language Understanding
- Offline Development of ASR modules (rescoring is quick and convenient way to test new ideas)



# Measuring ASR Performance & Practical Optimization Issues

# **Measuring ASR Performance**

#### Substitution Errors

Recognizer confuses word 'a' for word 'b'

#### Deletion Errors

Recognizer does not output an expected word

#### Insertion Errors

Recognizer outputs an extra word not spoken

# NIST sctk-1.2 scoring software

http://www.nist.gov/speech/tools/

```
Alignment# 84 for speaker sls
id: (sls-20000629-006-001)
Scores: (#C #S #D #I) 8 0 2 0
REF: i'd like to go TO st louis on september SEVENTH
HYP: i'd like to go ** st louis on september ******
Eval: D D D
```

Alignment# 90 for speaker sls id: (sls-20000629-006-007) Scores: (#C #S #D #I) 2 1 0 1 REF: \*\* no THAT'S incorrect HYP: NO no NO incorrect Eval: I S

Automatic Speech Recognition: From Theory to Practice

# **Typical Outputs for Scoring Software**

Word Error Rate =  $100\% \times \frac{\text{No. Subs} + \text{Dels} + \text{Ins}}{\frac{1}{2}}$ No. words in Correct Sentence

No. Correct words 

No. Substitutions



**T-61.184** 

Automatic Speech Recognition: From Theory to Practice

# Example output from Sclite (sctk-1.2)

Input (1): Reference transcription with key identifier surrounded by parentheses:

START OVER (sls-20000621-006-009) TO GO TO LOS ANGELES (sls-20000628-003-001) PITTSBURGH (sls-20000628-003-002) OCTOBER TWENTY THIRD (sls-20000628-003-003) LATE MORNING AFTER NINE (sls-20000628-003-004)

Input (2): Hypothesis from recognizer with key identifier for each sentence [like reference]

## Example Output from Sclite (sctk-1.2)

#### Scoring: sclite -i wsj -r ref.txt -h hyp.txt



Automatic Speech Recognition: From Theory to Practice
## **How to Calculate Word Error Rates?**

- An algorithm is shown on page 421 of the book "Spoken Language Processing" by Acero et al.
- Algorithm based on dynamic programming
- Define correct word string as,

 $\mathbf{W}_1\mathbf{W}_2\cdots\mathbf{W}_n$ 

Define hypothesized word string as,

$$\hat{\mathbf{W}}_1 \hat{\mathbf{W}}_2 \cdots \hat{\mathbf{W}}_m$$

Automatic Speech Recognition: From Theory to Practice

## **How to Calculate Word Error Rates**

Define R[i,j] as the minimum error of aligning the two substrings:

$$\mathbf{W}_1 \mathbf{W}_2 \cdots \mathbf{W}_n \qquad \qquad \hat{\mathbf{W}}_1 \hat{\mathbf{W}}_2 \cdots \hat{\mathbf{W}}_m$$

- B[i,j] is a back pointer used to recover error types
- Initialization: R[0,0] = 0; $R[i,j] = \infty$  if (i < 0) or (j < 0)

## **How to Calculate Word Error Rates**

for i = 1, ..., n {  
for j = 1, ..., m {  

$$R[i, j] = \min \begin{bmatrix} R[i-1, j]+1 & (deletion) \\ R[i-1, j-1] & (match) \\ R[i-1, j-1]+1 & (substitution) \\ R[i, j-1]+1 & (insertion) \end{bmatrix}$$
  
 $B[i, j] = \begin{bmatrix} 1 (deletion) \\ 2 (insertion) \\ 3 (match) \\ 4 (substitution) \end{bmatrix}$ 

Automatic Speech Recognition: From Theory to Practice



Automatic Speech Recognition: From Theory to Practice



Automatic Speech Recognition: From Theory to Practice

| rror sequer<br>ecovered by                | ice (corr<br>/ back-tra | ect, su<br>acing t | ıbs, del<br>througł | , inse<br>n B[i,j] | rtions) c<br>terms.    | an be   |
|-------------------------------------------|-------------------------|--------------------|---------------------|--------------------|------------------------|---------|
| word                                      | error                   | rate               | = 100               | % ×                | R[n,m<br>n             | ]       |
| here can be<br>Il give same               | e multiple<br>e numbe   | e back<br>r of er  | traces              | with e             | equal eri<br>erent str | or rate |
| here can be<br>Il give same<br>lignments! | e multiple<br>e numbe   | e back<br>r of er  | traces<br>rors, bเ  | with e<br>ut diffe | equal eri<br>erent str | or rate |

# **Alternative Computation of R[i,j]**

$$R[i, j] = \min \begin{bmatrix} R[i-1, j] + \mathbf{3} & \text{(deletion)} \\ R[i-1, j-1] & \text{(match)} \\ R[i-1, j-1] + \mathbf{4} & \text{(substitution)} \\ R[i, j-1] + \mathbf{3} & \text{(insertion)} \end{bmatrix}$$

- Use this scale to update R[i,j] and B[i,j]. Use B[i,j] to decode the insertions, subs, deletions.
- Count the number of errors and divide by the number of words in the correct sentence.
- This cost function is used by the NIST Sclite scoring package.

Automatic Speech Recognition: From Theory to Practice

# **Optimization of Recognizers**

- Requires deep understanding of how the recognizer operates, some intuition as well.
- Several parameters, each influence each other
- Difficult to exhaustively search for the best settings (LM scale factor, insertion penalty, beams).

Requires optimization on a <u>development</u> test set. DO NOT USE YOUR FINAL TEST SET!

## Remember...

Viterbi Path contains acoustic and scaled language model score with a word-transition penalty,

$$\hat{W} = \arg \max_{W} \left\{ \log(P(O \mid W)P(W)) \right\}$$
$$\hat{W} = \arg \max_{W} \left\{ \underbrace{\log(P(O \mid W))}_{\text{acoustic model}} + \underbrace{s \cdot \log(P(W)) + p}_{\text{language model}} \right\}$$

Path scores are maintained by tokens (token-pass search). At each frame, tokens are pruned by comparing the token's path score to the best token's score (minus a search beam).

## **Viterbi Beam Search Settings**

### Wide beam:

Prunes fewer competing hypotheses

□ Slower search since more paths explored

□ (sometimes) Fewer deletion errors; more insertion errors

### Narrow beam:

□ Faster search since fewer paths are explored

- □ (sometimes) More deletion errors; fewer insertion errors
- (sometimes) More substitution errors as correct path may be pruned away during search

Automatic Speech Recognition: From Theory to Practice

## Language Model Scaling Factor

- Increasing the language model scale factor reduces the influence of the acoustic models in the selection of the final word sequence.
- As LM scale factor is increased:
  - More deletion errors (since there is an increased penalty for transitioning between words)
  - Fewer insertion errors
  - □ Need wider beams! (since path scores will become larger)
  - Less influence of acoustic model observation probabilities

T-61.184

## **Word Insertion Penalty**

- Can be used to control the trade-off between insertion and deletion errors
- As penalty becomes larger (more negative),
  - More deletion errors
  - □ Fewer insertion errors
- Some recognizers include a "short-word transition penalty" for words which contain few phonemes.
- Positive values of this type of transition penalty are used to reduce deletions of short words

## **Speed Optimization**

- ~80% of the state hypotheses being searched are in the first phoneme of words in a mediumsized vocabulary recognition task.
- Word initial positions are searched *quite often* due to the ambiguities at word boundaries
- Efforts to reduce word-initial state explorations will improve the speed of a speech recognizer.

Automatic Speech Recognition: From Theory to Practice

## **Phonetic Fast Match**

- Look ahead "N" frames and determine which phonemes are currently "active".
- Do not search states involving those "in-active" phonemes.
- How to determine which phonemes are <u>active</u> in the upcoming frames?





Automatic Speech Recognition: From Theory to Practice



Active set of base phones determined in each frame in window and combined to predict base phones to activate in frame t + 1.

- Frame likelihoods are computed for each phoneme from context-independent HMM states
- Cross-HMM and Cross-Word transitions are only allowed for phonemes labeled as active.

## **Expected Gains from Fast-Match**

#### Ravishankar (1996)

□ CMU Sphinx-II recognizer.

□ 3-frame look-ahead

□ 20k and 58k word vocabulary system

□ 45% reduction in execution time

□ 2% relative increase in word error

#### Gopolakrishan (ICASSP, 1994)

IBM recognizer

□ Almost 50% reduction in execution time

□ 10% relative increase in word error rate.

Automatic Speech Recognition: From Theory to Practice

### Grapheme-to-Phoneme Conversion Methods for Speech Recognition Lexicon Development

### (A problem for researchers in text-tospeech synthesis and automatic speech recognition)

Automatic Speech Recognition: From Theory to Practice

## **Lexicon Development for ASR**

- Quality of the pronunciations of words will directly impact the speech recognition error rate.
- Unlike Finnish, many languages there is a less-thenobvious mapping between letters and sounds
- In English we have many issues,
  - Pronunciation of Proper Names (Streets, First/Last Names, Places)
  - □ Pronunciation of infrequent words, task-dependent vocabularies
  - □ CMU Pronouncing Dictionary for English (125,000 words)
- What to do when word is not part of the dictionary?

## **Problem Complexity**

- In some languages (Spanish, Greek, Turkish, Finnish) the association of text to phonemes can be described by a very small set of rules
- English poses many problems:

Automatic Speech Recognition: From Theory to Practice

# Some Pronunciation Generation "Tricks" for English

Method 1: Morphological Analysis

Ericson; McDonald; Ivanovich (-son, Mc-, -ovich)

#### Method 2: Pronunciation by Analogy

- □ Can be applied to names
  - (e.g., Trotsky in dictionary but Plotsky is not)
- Words that share the same final letter sequence are assumed to rhyme.

## If all else fails?

### Generate the pronunciation by hand

Not possible for text-to-speech synthesis systems
 Doable for speech recognition systems

### Can consider automated methods

- Two basic "automated" approaches
  - □ Rule-based (Letter-to-Sound Rules)
  - Data-driven (Letter-to-Sound Predictive Model)

Automatic Speech Recognition: From Theory to Practice

## **Rule-Based Methods**

- Develop a set of rules by hand to account for letter-to-sound conversion
- A[B]C  $\rightarrow$  D
- Multiple rules tend to apply to same string
- Must apply them in a specific order (most specific at the top, most general at the bottom)

Automatic Speech Recognition: From Theory to Practice

# Comparison of Existing Methods (Damper et. al, 1998)

#### Phonological Rules

- □ Hand-crafted letter-to-sound rules
- □ Elovitz, IEEE Trans. ASSP, Vol 24:446-459, 1976.

#### NetSpeak

- □ Neural Network; Coded letter context as input
- □ 25 output features to represent the target phone

#### Nearest-Neighbor (1B1-IG)

- Feature weighting function used to provide a real-valued weight for feature values (letter positions)
- Compute similarity between new instance and all stored instances; return the class label of the most similar instance.

#### Pronunciation by Analogy

Pronunciation of an unknown is assembled by matching substrings of the input to substrings of known words

Automatic Speech Recognition: From Theory to Practice

# Comparison of Existing Methods (Damper et. al, 1998)

Phonological Rules25.7% correctNetSpeak46.0% correct1B1-IG (Nearest Neighbor)57.4% correctPronun. by Analogy71.8% correct

Hand-driven phonological rules always <u>under</u> <u>performed</u> the data driven methods \*<u>significantly</u>\*.

Automatic Speech Recognition: From Theory to Practice



## **Letter-to-Phone Alignment**

- Number of letters in a word and the number of phones is not a one-to-one match
- Generally, each letter might map to 0, 1, 2, and sometimes 3 phones.
- Less phones than letters in most cases with some exceptions:

 $\Box X \rightarrow /k \text{ s/ in "extra"}$  $\Box O \rightarrow /w \text{ uh/ in "one"}$ 

Automatic Speech Recognition: From Theory to Practice

## **Example Candidate Alignments**

Letter-to-Phone alignments become training data for our automatic classifier.



## Hand-Seeded Candidate Alignments

- Improve candidate alignments by predetermining which phonemes each letter can map onto.
  - For example, the letter "c"

     □\_epsilon\_
     (e.g., "muscle")

     □ K, CH, S, SH, T-S
     (e.g., "church")
- Vowel letters can have a longer list of potential phonemes

Automatic Speech Recognition: From Theory to Practice

## **Algorithm Initialization**

- For each word in the dictionary, generate all possible alignments of letters to phones considering various epsilon placements
- Determine probability of aligning letter *I* with phone *p* for all *I* and *p*.

$$P(phone_{l} | letter_{l}) = \frac{Count(letter_{l} \rightarrow phone_{l})}{Count(letter_{l})}$$

Automatic Speech Recognition: From Theory to Practice

# **Determining the Best Alignment**

- Input to algorithm is a word containing letters and the associated phonemic sequence
- Generate all possible candidate alignments including the epsilon symbol
- Score each possible alignment and choose the most probable alignment for each word,

$$S = \prod_{l=1}^{L} P(phone_l \mid letter_l)$$

Automatic Speech Recognition: From Theory to Practice

# Alignment Results in Letter-to-Phoneme Mapping

| ABSORBED    | AX | Β | Ζ | AO R | BI |           |
|-------------|----|---|---|------|----|-----------|
| ABSORBENCY  | AX | В | Z | AO R | В  | AX N S IY |
| ABSORBENT   | AX | В | Z | AO R | В  | AX N TD   |
| ABSORBER    | AX | В | Z | AO R | В  | _ AXR     |
| ABSORBERS   | AX | В | Z | AO R | В  | _ AXR Z   |
| ABSORBING   | AX | В | Z | AO R | В  | IX _ NG   |
| ABSORBS     | AX | В | Z | AO R | В  | Z         |
| ABSORPTION  | AX | В | S | AO R | Ρ  | _ SH AX N |
| ABSTAIN     | AE | В | S | T EY | _  | Ν         |
| ABSTAINED   | AE | В | S | T EY | _  | N DD      |
| ABSTAINING  | AE | В | S | T EY | _  | N IX NG   |
| ABSTENTION  | AE | В | S | T EH | Ν  | CH AX N   |
| ABSTENTIONS | AE | В | S | T EH | Ν  | CH AX N Z |

## **Feature Vector Generation**

"Abbreviating → AX B \_ R IY V IY EY DX IX \_ NG"



Automatic Speech Recognition: From Theory to Practice

# **Potential Machine Learning Algorithms**

### Neural Network

Input to NN : coded versions of letters (with 3-letter surrounding context)

- Output of NN : vector of probabilities for selecting one of N phonemes
- Support Vector Machine

### Decision Tree

□ Input : letter context

(center letter plus 3 letters to left and right)

Output : phoneme symbol prediction (possibly epsilon)



## **Evaluating the Decision Tree**


## **Tree Size vs. % Correct**

| Minimum #<br>of Examples | Letters<br>Correct | Words<br>Correct | Tree<br>Size |
|--------------------------|--------------------|------------------|--------------|
| 8                        | 92.9%              | 59.6%            | 9884         |
| 6                        | 93.4%              | 61.6%            | 12782        |
| 5                        | 93.7%              | 63.1%            | 14968        |
| 4                        | 94.0%              | 65.2%            | 17948        |
| 3                        | 94.4%              | 67.2%            | 22912        |
| 2                        | 94.9%              | 69.4%            | 30368        |
| 1                        | 95.8%              | 74.6%            | 39500        |

## DT Performance for English, French, and German

| Lexicon                       | Letters | Words   |
|-------------------------------|---------|---------|
|                               | Correct | Correct |
| OALD                          | 95.8%   | 74 6%   |
| (British English)             | 95.070  | 74.070  |
| CMUDICT<br>(American English) | 92.0%   | 57.8%   |
| BRULEX                        | 00.0%   | 03 0%   |
| (French)                      | 99.0 /0 | 33.0 /0 |
| DE-CELEX                      | 08.8%   | 80 1%   |
| (German)                      | 30.0 /0 | 03.470  |

\*\* words with less than 4-letters were removed from test

## Does it Really Work Well? Probably Not for English!

- SONIC Speech Recognition System
  Wall Street Journal 20k-word vocabulary
  DARPA Nov. 1992 test set
- Compare word error rate for system designed with handdriven pronunciations vs. one with <u>completely automatic</u> <u>pronunciations</u> (DT method).
- Word Error Rate with Hand-Driven Pronunciations
  9.6% (8.5% after adaptation)
- Word Error Rate with Decision-Tree Pronunciations
  41.2% (38.2% after adaptation)

Automatic Speech Recognition: From Theory to Practice

## **Next Time**

- Some discussion and comparison of available speech recognition systems
- Some discussion about tools used in the field and trends in development of open-source components for speech recognition