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Today

More about Gaussian Mixture Models (GMMs)

Sources of Acoustic Variability

Methods for Acoustic Modeling for Speech 
Recognition

State Clustering Methods
Bottom-up 
Top-Down
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Resources used for Today’s Meeting

S.J. Young, J.J. Odell, P.C. Woodland, “Tree-based 
state tying for high accuracy acoustic modeling,” 
Proc. ARPA Human Language Technology 
Conference, Plainsboro, NJ, March, 1994 

J. Odell, PhD Thesis, University of Cambridge, 
“The use of context in large vocabulary speech 
recognition,” March 1995 
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Gaussian Mixture Model

Single-state HMM model 
Observation probability a sum of M component 
Gaussians,
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Estimating Gaussian Mixture Models

Define probability of tth observation being generated by 
the kth mixture component,

Note that “k” (bk) here refers to mixture component, not 
HMM state.  We are assuming just 1 HMM state.
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GMM Update Equations 
(Full-Covariance)
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GMM Update Equations 
(Diagonal-Covariance)
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Initialization of Model Parameters

How to initialize the means and variances and 
mixture weights of the model?

One method: compute global mean & variance 
of feature vectors,

Algorithm incrementally splits mixture into 2 
components,
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Initialization of Model Parameters

Incremental Mixture Splitting,
1. Apply 1 re-estimation iteration with N Gaussians
2. Find Gaussian with largest mixture weight
3. Split Gaussian into 2 components, adjust mixture weights 

to be ½ of the original weight (weights should sum to 1).
N=N+1.  Go to step 1 until desired N reached.

4. Apply re-estimation with N Gaussians for several 
additional iterations to ensure model parameter 
convergence
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Other Training Issues

Often useful to enforce a minimum variance 
value during model estimation.

Improves stability of the training algorithm on computers
Helps to avoid “nan” and “inf” during calculations

At each algorithm iteration, just check the 
variances of the model Gaussians.  If below a 
threshold, set them equal to a threshold.

For MFCC features (in speech recognition), 
threshold values of 0.01 or 0.001 are generally 
sufficient for good performance.
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Computing the Emission Probability

Assuming a diagonal covariance matrix,
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Computing the Emission Probability
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Computing the Emission Probability

Essentially we can just compute,
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Computing the Emission Probability

How much computation is required?
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“Md” subtractions,

“2M(d+1)” multiplies,
“M” exp operations
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Computing the Emission Probability

Let’s assume M=16, d=39,

624 subtractions
1,280 multiplies
16 exp(.) calls

Typical large vocabulary speech recognizer will 
have > 5,000 states and maybe M=16…32 
mixtures per state.  Remember, 100 frames per 
second!

Ck is pre-computed.
“Md” subtractions,

“2M(d+1)” multiplies,
“M” exp operations
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Ways to Improve Performance

Divides are more expensive than multiplies on 
most computer architectures.  So, store pre-
multiplied inverted variances,
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Nearest-Neighbor Approximation

Consider this approximation in the log-domain,
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Nearest-Neighbor Approximation

Computing log-probability under nearest-neighbor assumption, 
implies finding “best mixture component”

Assumes only 1 Gaussian contributes to the final log-likelihood 
(the reminder components assumed to have small probability).  
Allows “sum” to be replaced with “max”.

Can further speed up computation by partially computing 
summation (i=1..d). 
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Efficient Nearest Neighbor 
Computation

( )

end    
)( log     1)d(i if       

end        
1;i  i               

))()((*)(               

)(&)(log  ile        wh
;1    ;~        

2..M,kfor  )3
)(log)2
 compute 1)

2
kk

k

k

1

1

kt

ktk

t

k

t

ob

iioi

diob
iC

ob

Θ=+==

+=
−+Θ=Θ

<=>Θ
==Θ

=
Θ=

Θ

µθ



Automatic Speech Recognition: From Theory to Practice 20
T-61.184T-61.184

Example Uses of GMMs

Speaker Identification & Verification
Model each speaker with a GMM
Distribution of parameters (MFCCs) used to model acoustic 
space of each speaker.

Music Recognition
Can model each song with a GMM
Model is time-independent.  Can start playing the song at any 
position and GMM will correctly classify song
Group songs by artist into a single GMM.  Can detect the artist in 
most cases!
What about a “genre” GMM?  (classical, rock, jazz, pop?)

Speech Recognition
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Practical HMM Training 
(for Speech Recognition)

Our goal is to “assign” extracted feature 
vectors to HMM states

Two popular methods for training,
Forward-Backward training assigns a probability that each 
vector was emitted from each HMM state (fuzzy labeling)

Viterbi training just assigns a feature vector to a particular 
state (most likely state from the best path).
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Phoneme HMM

Let’s assume each phoneme is represented by 
3 HMM states connected with forward transitions,

S1 models the beginning part of the sound, S2 the middle, 
and S3 the end-part of the sound unit.

S1

11a
12a

22a

S2 S3

23a
33a
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Word & Sentence HMMs
Construct word & sentence-level HMMs from the 
phoneme-level units.  For example, “ONE” with 
pronunciation “W AX N”:

For simplification, let’s assume each state is a Gaussian 
Mixture Model (GMM).  We also have transition 
probabilities between states.

w ax n
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Viterbi Training
Given an utterance, we can construct the composite HMM from 
the phone units and use the Viterbi algorithm to find the best 
state-sequence (assignment of feature-vectors to HMM states):
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Viterbi Algorithm in Log-Domain
1. Initialization

2. Recursion

3. Termination

4. Path Back trace
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Viterbi Algorithm Illustration for 
Feed-Forward HMM Topology
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Viterbi Training

For each training example, use current HMM models to 
assign (align) feature vectors to HMM states.

Assignment is made by using the Viterbi algorithm.
Assignment is based on most-likely path through composite 
HMM model
We refer to this as “Viterbi forced-alignment”

Group feature vectors assigned to each HMM state and 
estimate new HMM state parameters (e.g., using GMM 
update equations).

Repeat alignment / retraining process
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Forward-Backward Training

Rather than assigning each feature vector to a 
particular HMM state, we compute a “fuzzy-
assignment”.  

“Fuzzy-assignment” is based on the probability 
of being in state i at time t,

Requires computing the
forward and backward
variables.
FB training is more 
expensive than Viterbi training
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Acoustic Modeling Issues
How to take into account variabilities in the 
acoustic signal?  For example, the context-
dependency of “w” in this example,
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Types of Acoustic Variability

Environmental Variability
Between-Speaker Variability

Gender, Age
Dialect
Speaking Style

formal vs. informal
Planned vs. spontaneous

Within-Speaker Variability
Variations within an utterance (could be due to prosody)
Speaker-specific co-articulation
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Variability-Dependent Recognition

One simple method might be to estimate model 
parameters under each condition,

Can not account for all factors (data-sparse).  
Also very inefficient.
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Variability-Adapted Recognition

Another solution adapts the parameters of the 
recognizer to better match the input,

Adaptation can be supervised or unsupervised

Speaker-
independent 
recognizer

adjust acoustic
model parameters

Ŵspeech
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An Ideal Acoustic Model also… 

Accounts for context-dependency
A phoneme produced in one phonetic context may be 
similar to the same phoneme produced in another phonetic 
context.  (the converse is also true!)

Provides a compact & trainable representation
Which is trainable from finite amounts of data

Provides a general representation
Allows new words to be modeled which may not have 
been seen in the training data
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Whole-Word HMMs

Assign a number of HMM states to model a 
word as a whole.

Passes the test?  
Accurate – Yes, if you have enough data and your 
environment consists of a small vocabulary.  No, if you are 
trying to model context changes between words.  
Compact – No, need too many states as vocabulary 
increases.  Probably not enough training data to model 
*every* word.  What about infrequent words???
General – No, can’t build new words using this 
representation.
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Context-Independent Phoneme HMMs

Context-independent models consist of a single 
M-state HMM (e.g., M=3), one for each phoneme 
unit

Also referred to as “monophone” models

Passes the test?  
Accurate – No, does not accurately model coarticulation
Compact – Yes, M states x N phonemes leads to only a 
few parameters which need to be estimated.
General – Yes, you can construct new words by stringing 
together the units.
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Context-Dependent Triphone HMMs

Context-dependent models which consist of a 
single 3-state HMM, one for each phoneme unit 
modeled with the immediate left-and-right 
phonetic context

Passes the test?  
Accurate – Yes, takes coarticulation into account
Compact – Yes, Trainable – No:  For N phonemes, there 
exists NxNxN triphone models.  Too many parameters to 
estimate!
General – Yes, you can construct new words by stringing 
together the units.
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Describing Context-Dependent 
Phonetic Models

Monophone:  
A single model used to represent phoneme in all contexts.

Biphone:
Each model represents a particular left or right context.
Left-context biphone notation: (a-b)
Right-context biphone notation: (b+c)

Triphone:  
Each model represents a particular left & right context.
(a-b+c) refers to phoneme “b” with “a” preceding and “c” 
immediately following.
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Context-Dependent Model Examples

Monophone:
BRYAN B R AY AX N

Biphone
Left-Context:  SIL-B B-R R-AY AY-AX AX-N
Right-Context: B+R R+AY AY+AX AX+N N+SIL

Triphone
SIL-B+R B-R+AY R-AY+AX AY-AX+N AX-N+SIL
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Word-Boundary Modeling

Word-internal Context-Dependent Model Sequence
(backs off to left and right biphone models at word 
boundaries):

BRYAN PELLOM SIL B+R B-R-AY R-AY+AX 
AY-AX+N AX-N P+EH P-EH+L EH-L+AX L-AX+M 
AX-M SIL

Cross-Word Context-Dependent Triphone Sequence

BRYAN PELLOM SIL-B+R B-R+AY R-AY+AX AY-AX+N 
AX-N+P N-P+EH P-EH+L EH-L+AX L-AX+M AX-M+SIL
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Triphone Acoustic Models

Provide nice trade-off
Compact, General, Accurate
Assumes dependency on just previous and following phoneme.

Modeling and Estimation Issues:
Not all triphone contexts appear in training data.  
We call these “unseen” triphones.
Many triphone contexts occur infrequently in the training data 
(data-sparse modeling problem)

Solution
Cluster HMM states which share similar statistical distributions
Estimate HMM parameters using resulting pooled data
How to cluster the data?????
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Trainability of Acoustic Models

Tradeoff exists between the level of detail of the 
acoustic model and our ability to adequately 
estimate the parameters of the model

Methods for improving trainability,
Backing-off : triphones biphones monophones
Smoothing : interpolate parameters of more specific 

models with those of less specific 
(better trained) models

Sharing : cluster similar contexts
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Basic Idea behind State-Clustering

For each phoneme example in the training data,
Segment data into HMM states (S1, S2, S3)
Assign a triphone context to each “chunk” of features

Cluster “chunks” so that each cluster has 
similar acoustic properties

Possible clustering methods
Heuristic 
Bottom-up
Top-down
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Heuristic Clustering

Define a set of equivalence classes,
C1: Stop = {B,D,G,P,T,K}
C2: Fricative = {S, SH, F, Z, ZH}
C3: Nasal = {M, N, NG}
C4: Vowel = {AX, AE, AY, IY, IX, IH, AA, AO, …}
C5: Semivowel = {L,R,W}
C6: Silence = {SIL}

Cluster data by class.  For example,
{C1}-AX+{C2}  {B-AX+S}, {D-AX+Z}, … ,{T-AX+SH}
{C5}-IY+{C6} {L-IY+SIL},{R-IY+SIL},{W-IY+SIL}
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Bottom-Up Clustering
Compare triphones of differing contexts and 
merge those that are most similar,

Estimate Gaussians for each “seen” triphone context
Compute Distance between triphones,

Merge triphone contexts based on distance and 
number of training examples.

Can not predict “unseen” triphones
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Bottom-Up Clustering
K. F. Lee, “Context-Dependent Phonetic Hidden Markov 
Models for Speaker-Independent Continuous Speech 
Recognition, IEEE Transactions on Acoustics, Speech, 
and Signal Processing, Vol. 38, No. 4, pp. 599-609, 1990.

Proposed “Generalized Triphones”
“Seen” triphone contexts merged using an information 
theoretic measure (entropy).
Similar to heuristic clustering, but clusters found in a more 
principled manner.
Merging done at the model-level, not HMM state level.
“unseen” triphone contexts can not be predicted
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Top-Down Clustering

Place all training tokens at a root-node

Sequentially partition data into children nodes 
which share similar phonetic contexts

Split-data to ensure,
Sufficient difference between clustered states
Sufficient training data exists to estimate model 
parameters

Allows for prediction of “unseen” triphones…
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Decision-Tree 
State Clustering Approach

A decision tree is constructed by asking phonetically 
motivated questions about the left/right context of the 
training data

Binary {yes/no} questions are asked about the data.  E.g., 
“is the phoneme to the immediate left a nasal?”

Questions which maximize the likelihood of the training 
data being generated by the model are selected.

Each sequential split of the data partitions the acoustic 
space into similar phonetic contexts.
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Decision-Tree State Clustering
(one tree built for each state-position)
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Example Splitting Questions
$silence                SIL br ls lg ga
$aspiration             HH
$dental                 DH TH
$l_w                    L W
$s_sh S SH
$s_z_sh_zh S Z SH ZH
$affricate              CH TS JH
$nasal                  M N NG
$schwa                  AX IX AXR
$voiced_fric DH Z ZH V
$voiceless_fric TH S SH F

“Is the Left-Context an “L” or “W”?
“Is the Right-Context an “L” or “W”?
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Advantages of 
Decision-Tree Clustering

Hierarchical structure ensures context-
dependent model is built for all contexts

Expert linguistic knowledge incorporated via 
splitting questions

Splitting can be controlled to ensure enough 
data exists to model the particular context

Greater degrees of context-dependency can be 
incorporated through the question sets
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Algorithm Constraints 

Each leaf should have a minimum 
number of examples to ensure that the 
models are adequately estimated

A finite set of questions can be used to 
split each node.  Question set selected to 
incorporate knowledge of similar 
articulatory events.
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Splitting Tree Nodes

At each node-position in the tree, questions assigned to 
the node are evaluated according to their “goodness of 
split”.  Best question selected to split the parent node 
into 2 children nodes.

“Goodness of split” based on maximizing the likelihood 
of the training data

Children nodes are also checked to ensure that a 
minimum amount of data are assigned for improved 
trainability.
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Summary of Decision-Tree Process
1. All of the states to be clustered are placed 

initially at the root node of the tree and the 
likelihood of the training data is calculated

2. Node is split by finding the question which 
partitions the states in the parent node to give 
the maximum increase in log-likelihood.

3. Splitting process repeated until:
• Log-likelihood change due to a split falls below a 

threshold,
• Number of training examples (or occupation count) within 

children nodes fall below a threshold
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Evaluating the Goodness of Split

It can be shown that assuming Gaussian PDFs
of dimension ‘d’, the approximate log-likelihood 
of generating the training data is given by,

Where,

( )∑∑
∈ ∈
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2
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S : Set of tied states
)(SΣ : Variance of tied states
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Variance of the Tied-States

Assuming each seen triphone context is modeled using a single 
mean vector and diagonal covariance matrix,

Thus, the pooled variance is estimated from the individual 
means and variances of the seen triphone contexts (c) which 
comprise the tied-state.  Weighted by counts (gamma)
Splitting is therefore based on training data statistics, not the 
data itself.  Makes the algorithm efficient.
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Evaluating “Goodness of Split”

Assuming a question “q” partitions the states 
“S” into 2 yes/no subsets:

Question is selected such that the change in 
log-likelihood is maximized,

)())((    ))(( SSS ny LqLqLLq −+=∆

)(qyS )(qnS
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Practical Viterbi Training using DT’s
Step 1:   Use Viterbi Algorithm to determine alignment of 
frames of training data to HMM states by building 
sentence-level HMMs.   Requires an initial HMM model.

Step 2:  Place all frames of training data at the root node 
of the tree (there are 3 trees built for each phoneme, one 
for each HMM state). Split the tree into leaf nodes using 
the decision tree algorithm

Step 3: Re-estimate the clustered state Gaussians using 
frames assigned to each leaf.  Repeat 1-3 until model 
converges.   Gaussians constructed from final set of tree 
leaves will model all possible triphone contexts.
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Understanding the Importance of 
Decision Tree Splitting Questions

Young, HLT’94 paper
Wall Street Journal 
Dictation Task 
30 hours of training data
Most important U.S. 
English questions,

“Is the right context a 
vowel?”
“Is the left context a 
vowel?”
“Is the right context an 
unrounded vowel?” …
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Improvements Realized 
by Tree-Based Clustering

9.67%Tree-based Clustering
(Top-Down)

10.73%State-based Clustering
(Bottom-Up)

12.17%Model-based Clustering
(Bottom-Up)

Word Error Rate
(Wall Street Journal
5k Vocabulary Task)

System 
Clustering 

Method

From Young HLT’94
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Research Issues

Acoustic training based on maximizing the 
likelihood of the training data does not ensure 
discrimination between units.

Can consider “discriminative” training of 
acoustic model parameters

Discriminative training methods are expensive 
since most require running the recognizer on 
the training data so that confusions can be 
modeled.
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Alternative Methods for Modeling Emission 
Probabilities in an HMM system
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Multi-layer Perceptron (MLP)

to
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Multi-layer Perceptron (MLP)

Advantages
Input a feature vector and immediately compute posterior 
probability of each modeled class (must divide by the priors from 
the training data to get the likelihoods for the HMM)
(1) Efficient in terms of CPU compared to Gaussians, 
and (2) efficient in terms of memory space

Disadvantages
Each output node models 1 context-dependent class.  Too many 
output nodes needed
Training time is very slow compared to Gaussian systems
Speaker Adaptation?  How to adjust the weights??
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Recurrent Neural Network (RNN)

Advantages
Feedback in this architecture allows for better modeling of 
context-dependency.  Can use one output node per phoneme.  
Network generates posterior probability of phoneme.  Can 
convert to likelihoods by scaling by the priors of each unit.
Memory and CPU efficient during recognition
NICO Toolkit: http://www.speech.kth.se/NICO/

Disadvantages
Training time required to compute RNN parameters
Scalability to very large speech recognition tasks unknown



Automatic Speech Recognition: From Theory to Practice 65
T-61.184T-61.184

Discrete Symbol HMM 
Model speech features using discrete symbols:

to

Vector to 
Codeword

index

kth codeword

k

codebook
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Discrete Symbol HMMs
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Semi-Continuous HMM (SCHMM) 
System has a codebook of N Gaussians 
(e.g., N=256)

Each clustered HMM state modeled by weighted 
set of Gaussians from system codebook

S1 SNCodebook of N Gaussians 
(Mean Vectors, Cov. Matrices)

iw
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Semi-Continuous HMM (SCHMM)

Advantages
Speed:  Compute all Gaussians within codebook for each input 
frame.  Once computed, the state-likelihoods are efficiently 
computable (weighted sum).
Efficiency: the codebook can be stored with little memory 
overhead
Trainability: the system codebook can be robustly estimated.

Disadvantages
Some loss in modeling accuracy due to fixed codebook
Fully-continuous systems essentially have 1 codebook per 
clustered state.  SCHMMs have 1 code book shared by all 
clustered states.
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Exercise 4: Project Midterm

Details posted on course webpage (see link to exercise 4)

Project can be “hands-on” or “literature survey”
Hands-on projects require less writing

Important Dates
October 18th, deadline to select a group for “hands-on” projects 
and also to submit an abstract for your project.  Must be 
approved by the 18th.
October 27th, Midterm write-up deadline
November 29th, In-class project presentations
December 8th, deadline for final project write-up
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Upcoming Meetings

Monday, October 18th

Language Modeling for Speech Recognition

Monday, October 25th

Search Algorithms for Speech Recognition


