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Expectations for this course

" Today to present a basic idea of Hidden Markov
Models (HMMs)

" Next week we’ll discuss how HMMs are used in
practice to model acoustics of speech

® Don’t be lost in the math today: | don’t expect
you’ll get the theory from all these slides! If
you want to learn about HMMs it’s important to
take a look at the resources listed on the next
slide.
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® L. R. Rabiner, “A Tutorial on Hidden Markov Models and
Selected Applications in Speech Recognition,” Proc.
IEEE, Vol. 77, No. 2, pp. 257-286, February, 1989.

Resources for Today’s Topic

® L.R. Rabiner & B. W. Juang, Fundamentals of Speech
Recognition, Prentice-Hall, ISBN 0-13 015157-2, 1993 (see
chapter 6)

®" The Cambridge HTK Toolkit has a user manual called the
“HTK Book”. This is an excellent resource and covers
many of the equations related to HMM modeling
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® Characterized by:
O A set of N states

5 = {SoaSv”'SN}

O Transition Probabilities aij

Discrete-Time Markov Process

" First-order Markov Chain
O Current system state only depends on previous state
U Let ¢, be the system state at time t.
U Transition probability depends only on previous state

P(q, :Sj g, =8:,9,, =5, )=P(q, :Sj 19,1 =1S5))

k a,=P(q,=S,]q,,=5) /
T-61.184
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" Properties:

~

Discrete-Time Markov Process

d A
00 01
A =
| dyy Ay
a; 20 V1,]

" “Observable Markov Model” : output of the process is a
set of states.

T-61.184
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Example 1: Single Fair Coin
Observable Markov Process

~

Outcomes
U Head (State 0)
O Tail (State 1)

Observed outcomes
uniquely define state
sequence

d e.g., HHHTTTHHTT -
S=0001110011

Transition Probabilities,

0.5 0.5
A=
03 0s

T-61.184
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mExample 2: Observable Markov Modeh
of Weather

" States:
S, : rainy
4d S, : cloudy
d S, :sunny

| With state transition
probabilities,

04 03 03
A=1{a;}=|02 06 0.2

K 0.1 0.1 0.8
T-61.184
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® What is the probability that the weather for 8
consecutive days is “sun, sun, sun, rain, rain,
sun, cloudy, sun”?

bservable Markov Model of Weather\

® Solution

O Observation sequence:
O = {sun, sun, sun, rain, rain, sun, cloudy, sun”}
O Corresponds to state sequence, S={2,2,2,0,0, 2,1, 2}
0 Want to determine, P(O | model)
d P(O | model) =P (5={2,2,2,0,0,2,1,2} | model )

k T-61.184 I/
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bservable Markov Model of Weather

(o

- -_ 0.4 03 0.3]
7T, 1nitia sta'tepro ability A:{aij}: 02 0.6 02
7 = Plg, =i) 0.1 0.1 0.8

P(O|model) = P(S =1{2,2,2,0,0,2,1,2} | model)
=P(q, =2)P(q, =2|g9,=2)---P(q3 =21 q; =1)

= Tty " lyy Uy "lyg " Uog g Ay~

=1, -(0.8)°(0.1)-(0.4)-(0.3)-(0.1)-(0.2)
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/ “Hidden” Markov Models \

® Observations are a probabilistic function of
state

® Underlying state sequence is not observable
(hidden)

" First-order assumption

" Output independence: observations are
dependent only on the state that generated
them, not on eachother.

T-61.184 I/
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Example: 2-Coins, \
Observable Markov Process

Observations
O Head
d Tail

Observed outcomes do
not uniquely define state
sequence

Transition Probabilities, P(H)=H P(H)=P,

P(T)=1-P  P(T)=1-P,
A:{ d 1_aoo}
l—ay, dy

T-61.184 I/
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Urn-and-Ball lllustration

A Genie plays a game with a blind observer

1.

2
3.
4

K

Genie initially selects an Urn at random

. Genie picks a colored ball, tells blind observer the color

Genie puts ball back in Urn

. Genie moves to next Urn based on random selection

procedure from current Urn.
Steps 2-4 repeated

~

Automatic Speech Recognition: From Theory to Practice
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Urn-and-Ball lllustration

>

. .

" Observations:

O The color sequence of the balls

B States:

O The identity of the urn

B State-Transition:

\_

O The process of selecting the urns

Automatic Speech Recognition: From Theory to Practice
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Urn-and-Ball lllustration

P(R)=0.20 P(R)=0.45  P(R)=0.15
P(G)=0.30 P(G)=0.15  P(G)=0.70
P(B)=0.10 P(B)=020  P(B)=0.10
P(Y) = 0.60 P(Y)=020  P(¥Y)=0.05

" Observation sequence: RBYYGBYGR...

k O Individual colors (observations) don’t reveal urn (state)
T-61.184
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B A set of N states
S = {S09S19'”SN}

® Transition Probabilities

a,=P(q,=S,1q,.,=35,)
" A set of M observation

Discrete Symbol Observation HMM

symbols P(v,|S)) P(v|S))
VZ{Vsz»'“VM} P(v,|S)) P(v,|S))

" Probability Distribution : ;
(for state j, symbol k) P(v, |S,) P(v, |S))

k bj(k):P(Ot =V |Qt :])
T-61.184
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Discrete Symbol Observation HMM

® Also characterized by:

® Specification thus requires

\_

[ An initial state distribution

ﬂ:{”i}:P(% :i)

U 2 model parameters, N and M
O Specification of M symbols
O 3 probability measures A,B,n

A=(A,B,x)

P, |5;)

P(v[S);)
P(v,[S;)

Py, [S;)

Automatic Speech Recognition: From Theory to Practice
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/ Left-to-Right HMMs \

B N a.=0 <I
a, d, dj i J
A=|a, a, a,y . 0, i1#1
| d3; U3y i3 | , 1=

k d;
T-61.184
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/ Ergodic HMMs

a. >0 Vi, Vj

Automatic Speech Recognition: From Theory to Practice
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HMM as a Symbol Generator

Given parameters N, M, A, B, and ©, HMMs can generate
an observation sequence,

0= {019029"'9OT}

1. Choose initial state ¢, =1 from init. state distribution =
2.8t 1 =1
3. Choose O, =V, according to distribution bl. (k)

4. Transition to set state ;.1 =/ according to state-
transition probability distribution a

5.Set t =t +] gotostep3
T-61.184 I/
Automatic Speech Recognition: From Theory to Practice 21



-

HMM as a Symbol Generator

Example output from symbol generation

Time, t 1 2 3 4 5 6 T

State

Observation

®" We can think of the HMM as generating the observation

\_

sequence as it transitions from state to state.

~

Automatic Speech Recognition: From Theory to Practice
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®" Problem 1: Scoring & Evaluation

O How to efficiently compute the probability of an
observation sequence (O) given a model (A)? - P(O| 1)

~

Three Interesting Problems

" Problem 2: Decoding

O Given an observation sequence (O) and a model (L), how
do we determine the corresponding state-sequence (q)
that “best explains” how the observations were generated?

®" Problem 3: Training

O How to adjust model parameters (A = {A,B,n}) to maximize
probability of generating a given observation sequence? -

k maximize P(O| 1).
T-61.184
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" Given an observation sequence,

0= {019029'”»0T}

~

Problem 1: Scoring and Evaluation

® Want to compute probability of generating it:
P(O| 1)

" Let’s assume a particular sequence of states,

k q_{%vqy'“DQT}
T-61.184
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Problem 1: Scoring and Evaluation

Using the chain rule we can decompose the problem by
summing over all possible state sequences,

P(O|2)=) P(O|q,2)P(q|A)

all q
The first term relates to the likelihood of generating the
observed symbol sequence given the assumed state
sequence.

The second term relates to how likely the system is to
step through those sequence of states.

T-61.184 I/
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Problem 1: Scoring and Evaluation

~

" Probability of the observation sequence given

\_

the state sequence,

T
PO|q,4) =] | p(o,|q,,2)
=1

=b,(0):b,,(0,)-+-b, (o)

Probability of the state sequence,

P(q | i) - 72-41 (a%% ) . (a%% ) . (Clq

)

Automatic Speech Recognition: From Theory to Practice

71491
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® Using the chain rule,

P(O|4)=) P(O|g,)P(q| 1)

allq

:Zﬂq QI(Ol)anIZb (0,)-- Ao iar qT(OT)

allq

~

Problem 1: Scoring and Evaluation

®" This is not practical to compute. For N states, T
observations, the number of state sequences is:

K OQT*N")
T-61.184
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Forward Algorithm

~

Definition: «,(i) = P(0,0,...0,,q, =i|A)

(Probability of seeing observations o, to o, and
ending at state i given HMM )

. Initialization

. Induction

Termination

o, (i) =7,

& (J)= Zat (i)aij

PO|A)= ZaT(i)

b;(0,,)

Automatic Speech Recognition: From Theory to Practice
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Forward Algorithm lllustration

a,(1) .
® a,
,(2) ¢ ‘/\;. 0@_+1(D= _
a, g S
at(i) ./ o ;at(l)aij bj(0t+1)
a,(N) o 4 R

T-61.184
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Forward Algorithm Example

® Given the above HMM with discrete observations “A” and

“B”, what is the probability of generating the sequence
“O={AAB}’?

" In other words, find P( O={A,A,B} | 1)

T-61.184 I/
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Forward Algorithm Example

Answer:
P(O|\)=
0.03+0.13
= 0.16

A A B
=() =1 t=2 t=3

0.6*0.8 0.6*0.8 0.6*0.2
SO 1.0 o| 0.48 o 0.23 o 0.03
0.4*0.3 0.4*0.3 0.4*0.3
1.0*0.3 1.0*0.3 1.0*0.7
ksl 0.0 o 0.12 o o0.09 o 0.13
T-61.184
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® Definition: S,(i)=P(0,,0,,...0,.,q9, =i|A)

~

Backward Algorithm

" Probability of observation sequence o,,, to o;
given state i at time t and HMM A

" |nitialization 7 (i) =1

® Induction ,B(z) Zay ](Om ,Bm(f)

k I<i<N
T-61.184
Automatic Speech Recognition: From Theory to Practice 32




-~

Backward Algorithm lllustration

° a; b, (0r+1 ) :Bt+1 (1)
ﬂt (l) — a.b (0 )
N 'g — - ,Bt+1 (2)
2.43b; (000 () b, (01n)
= ° /Bt+1 (])

y-J

ﬂt+1 (N)

T-61.184
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Backward Algorithm Example

0.6*0.2

~

ES _
7, =1 0.4%0.3 0.4%0.3
1.0%*0. 1.0%*0.

1.0

0.4*0.7

E;l 0.00 |e 0.21 |e 0.7
*r, =0

Automatic Speech Recognition: From Theory to Practice

1.0*0.
< 1.0
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" In fact, there are 2 ways to compute P(O| 1)

~

Problem 1: Scoring and Evaluation

N
PO|A)= ZOtT (i)  Forward Algorithm
i=1

N
PO|A)= Zﬂi S,(i) Backward Algorithm
i=1

" Computation of each term is O(N°T)

k T-61.184 I/
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" Given an observation sequence,

0= {019029'”»0T}

Problem 2: Decoding

®" Find the single best sequence of states,

q = {Q1DQ29'“9qT}

® Which maximizes,

k P(0,q|4)
T-61.184
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~

Solution: Viterbi Algorithm

Define:

0,(i)= max P(q,9, "4, 9, =1,0,0,...0, | A)

9192911

“Highest probable state sequence that
accounts for observations 7 through t-1
and ends In state 7 and time t”.

5., (j) =[maxd,(i)a,1-b,(0,,,)

T-61.184 I/
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Viterbi Algorithm lllustration

5.1
D,
) a, .

5t( ) ¢ - >. §t+1(j):

6, (7) .al]//o max| 0 (1) 0,(0:.1)

5I(N) ® aNj ®

k time t time t+1
T-61.184 I/
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/ Viterbi Algorithm

~

1. Initialization

0,())=70,(0,) v, ()=0

2. Recursion

0,(j) =max[o,_,(i)a;]b;(o,)

I<i<N

w,(j) =argmax|o, ,(i)a,]

I<i<N

3. Termination p* = max|s, (i)] g, = arg max[5T (i)]

I<isN I<i<N

4. Path Back trace q;k =, (q,:l)

=

T-61.184 I/
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Viterbi Algorithm lllustration

Automatic Speech Recognition: From Theory to Practice
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Viterbi Algorithm

~

in Log-Domain

® Due to numerical underflow issues, it is often common to

conduct the Viterbi algorithm

in the log-domain,

T, :log(”i)

5j(ot):f
Ziy.zlog

_Og(b j (Ot ))

a;)
\dij

® Viterbi search in speech recognition systems is
implemented in the log-domain for example.

\_

T-61.184 I/
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1. Initialization 5 (/)= 7, +5.(0,) w,(i)=0

Viterbi Algorithm in Log-Domain

5.(j)=max[5,_,(i))+a,]+b.(0
2. Recursion t(]) 1<i<N “() i J( t)

v, (j) = argmax(5, (i) + ]

I<i<N

3. Termination p*_— max@(;’)] qr = argmaXFT (i)]

I<i<N I<i<N

4. Path Back trace q; =, (q;)

k T-61.184 I/
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Problem 3: Training

®" Train parameters of HMM

O Tune A to maximize P(O| 1)
O No efficient algorithm for global optimum

~

O Efficient iterative algorithm finds a local optimum

® (Baum-Welch) Forward-Backward Algorithm

\_

O Compute probabilities using current model A
U Refine A > A based on computed values

0 Uses a and B from forward and backward algorithms

Automatic Speech Recognition: From Theory to Practice
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and observation sequence”
T-61.184 I/
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Forward-Backward Algorithm

Define:

ét(iaj):P(qt =1,q,, :]|Oaﬂ')
— P(qt :iDQtH :]9O|Z)
P(O|4)

“Probability of being in state i at time ¢
and state j at time t+7 given the model
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Forward-Backward Algorithm

¢ (t,))=P(q,=1,9,,,=j|O,4)
_ 0[ (l)alj ](Ot+1)ﬁt+1 (])

P(O| )

K T-61.184 I/
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Forward-Backward Algorithm

¢ (1, J)=P(q, =1,9,,, =0, 1)
0[ (l)alj ](Ot+1)ﬂt+1(])

- P(O]|A)
_ CZ (l)ay ](Ot+1)ﬁt+1 (])

Zat (1), (i)

k -
T-61.184
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N
v, (i) = Z £ (i, j) Probability of being in state
j=I1

Forward-Backward Algorithm

i at time ¢
T-1
B Expected number of
y, (i) = transitions from state i in O.
=1
.|

— o Expected number of
5; (la ]) — transitions from state i to

k t=1 state jin O.
T-61.184 I/
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® Using these definitions, we can compute the
initial state occupancy probability,

Forward-Backward Algorithm

JT. = expected number of timesin statei at time ¢ =1

= 7,(7)

k T-61.184 I/
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Forward-Backward Algorithm

expected number of transitions from state i to state j

a. =
/ expected number of transitions from state
-1 -1
Y EGH) D EG))
. t=l t=1
- T-1 N Tl
Y EGH) Dy, )
t=1 j=1 t=1

k T-61.184 I/
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b, (k)=

~

expected number of times in state j and observing kth symbol

Forward-Backward Algorithm

expected number times in state j

ZZ& (jsJ) Zm> Za (HB)

1 j=1

=Vk . Ot —Vk . Oz—Vk

25 (jsJ) Zm) Za (HB()

k T-61.184 I/
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1. Initialize A=(A,B,r)

Forward-Backward Algorithm

It can be shown
2. Compute a, 3, and ¢ That

3. Estimate ) = (A,B, 1) P(O|%) > P(O] &)

4. Replace L with A U—;?le:s

Q. If not converged go to 2 /
T-61.184
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FB Algorithm Satisfies Constraints:

~

T-61.184 I/
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" Discussions up until this point have considered
observations characterized by discrete symbols

Continuous Observation Densities

® Often, we work with continuous valued data

® Can convert continuous variables to discrete
symbols using a Vector Quantizer (VQ)
codebook [with information loss]

¥ How to model continuous observations

k directly?
T-61.184
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Mixture Gaussian PDFs

~

" Mixture Gaussian PDF with M components,

M
bj(ot) = chkN(Otn“jkaij)
k=1

® Constraints on the mixture weights,

\_

M

Zcﬂc =1

k=1
¢y 20, 1<k<M

Automatic Speech Recognition: From Theory to Practice
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Definition

~

" Probability of being in state j at time t with the
kth mixture component accounting for o;:

7/t(jak):

\_

PAANIAC)

a, ()5 (J)

CjkN(Oznﬂjkvzjk)

M
> cuN(©,, 12,5 )

| m=1

Automatic Speech Recognition: From Theory to Practice
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Resulting Equations for \
Mixture Weight & Mean Update

T-61.184 I/
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/ Resulting Equations for \

Transition Matrix & Variance Update

" Transition probability a; same as case
for discrete symbols. Covariance Matrix:

T /
Zyt(jak)'(ot _ﬁjkxot _ﬁjk)
_ t=1

T-61.184 I/
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Estimation from Multiple \
Observation Sequences

" We estimate HMM parameters from multiple

examples of speech:

d Collected from different speakers
Q In different contexts

® We attempt to model variability in producing

\_

each sound unit by estimating parameters from
large corpora of speech data.

T-61.184 I/
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® Assume K training patterns (observation
sequences),

0=[0",0?,...,0%
® Where,

& _J ® (k) k)
O —{01 , 0, ,...,oTk}

Multiple Observations

" And,

~

oW
k P, = P( |A4)
T-61.184
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/ Transition Probabilities
with Multiple Observations

Z Za (Da;b( g?ﬂﬂzﬁl(])

— k
aq. t=1

~

lJ K

;Za (i) (i)

k=1 ~ k

k T-61.184 I/
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Observation Probabilities
with Multiple Observations

I WACY A

t=1

bj (l) _ 5.1.0p=v]

~

T-61.184 I/
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" How to estimate the parameters of a single-state
HMM model with M component Gaussians?,

Single State HMM Example

M
b(ot>=2wkbk<ot,uk,zk>

M | -
Z d/2‘zk‘1/2 exp(_E(Ot _”k) Zkl(ot — Uy )j

k:I

k T-61.184 I/
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" Define probability of tth observation being generated by
the kth mixture component,

Single State HMM Example

Pk | 0,,7) =te (00

kzz; Wby (Ot )

" Note that “k” (b,) here refers to mixture component, not
HMM state. We are assuming just 1 HMM state.

~

k T-61.184 I/
Automatic Speech Recognition: From Theory to Practice 63



\_

T
TPk o, ) f——

W =
t=1
T
> P(k|o,,2)-o,
Updated - L
k T
(new) > P(k|o,,2)
parameter =1
o T
estimates Z P(k|o,,2)-(0,}
>, |= t=1

T
> P(klo,,2)
t=1

/Single State HMM Update Equations\

This term

is computed
using model
parameters
from previous
algorithm
iteration.

Automatic Speech Recognition: From Theory to Practice
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Mixture Gaussian (1-D case)

b(0)

0

-7.5 -5.5 -3.5 -1.5 0.5 2.5 4.5 6.5

~

Example: 3 mixtures used to model underlying
random process of 3 Gaussians /
T-61.184
65
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®" You will estimate the parameters of a single
state multivariate HMM given a sequence of
observations (O).

~

Homework #3

®" Training parameters (observations) are MFCCs
(13 dimensional) from 10 speakers

" Test parameters: from unknown speakers...
which speaker most likely produced the
sequence?

k T-61.184 I/
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® Can compute the probability of generating the
observation sequence for each estimated
single-state HMM:

~

Homework #3

T
log P(O] A,) =) logh(o,)
=1

®" Find the model which has the maximum log-

probability...
k T-61.184 I/
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® First-Order Markov Chain

O Probability of transitioning to a state only dependents on the
current state

HMM Assumptions

" Time-independence of State Transitions
O Transitioning from state A to state B is independent of time

" Observation Independence

O Observations don’t depend on each other, just on the states that
generated them

® (sometimes) Left-to-Right Topology

O As we will see, it is generally assumed that a left-to-right HMM is
used to model speech units (phonemes)

k T-61.184
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Important Concepts from Today

®" Do you understand the basic idea of an HMM?

® Could you implement the Viterbi Algorithm if
you had to?

® Can you estimate at least the parameters of a
single-state HMM (mixture-Gaussians)?

" What assumptions do HMMs impose on the data
being modeled?

k T-61.184 I/
Automatic Speech Recognition: From Theory to Practice 69




/ Next Week \

® How to use HMMs for modeling speech units?
® Consider major strategies for acoustic training

" How to model context dependencies using
HMMs

® Some practical notes on HMM training for
speech recognition

k T-61.184 I/
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