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Motivation for Today’s Topic
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Expectations for this course

Today to present a basic idea of Hidden Markov 
Models (HMMs)

Next week we’ll discuss how HMMs are used in 
practice to model acoustics of speech

Don’t be lost in the math today: I don’t expect 
you’ll get the theory from all these slides!   If 
you want to learn about HMMs it’s important to 
take a look at the resources listed on the next 
slide.
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Resources for Today’s Topic

L. R. Rabiner, “A Tutorial on Hidden Markov Models and 
Selected Applications in Speech Recognition,” Proc. 
IEEE, Vol. 77, No. 2, pp. 257-286, February, 1989.

L.R. Rabiner & B. W. Juang, Fundamentals of Speech 
Recognition, Prentice-Hall, ISBN 0-13 015157-2, 1993 (see 
chapter 6)

The Cambridge HTK Toolkit has a user manual called the 
“HTK Book”.  This is an excellent resource and covers 
many of the equations related to HMM modeling
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Discrete-Time Markov Process
Characterized by:

A set of N states

Transition Probabilities

First-order Markov Chain
Current system state only depends on previous state
Let       be the system state at time t.
Transition probability depends only on previous state
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Discrete-Time Markov Process

Properties:

“Observable Markov Model” : output of the process is a 
set of states.
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Example 1: Single Fair Coin 
Observable Markov Process

Outcomes
Head (State 0)
Tail (State 1)

Observed outcomes 
uniquely define state 
sequence

e.g., HHHTTTHHTT 
S=0001110011

Transition Probabilities,
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Example 2: Observable Markov Model 
of Weather

States:
S0 : rainy
S1 : cloudy
S2 : sunny

With state transition 
probabilities,
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Observable Markov Model of Weather

What is the probability that the weather for 8 
consecutive days is “sun, sun, sun, rain, rain, 
sun, cloudy, sun”?

Solution
Observation sequence: 

O = {sun, sun, sun, rain, rain, sun, cloudy, sun”}
Corresponds to state sequence, S = { 2, 2, 2, 0, 0, 2, 1, 2}
Want to determine, P(O | model)
P(O | model) = P ( S={2,2,2,0,0,2,1,2} | model )
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Observable Markov Model of Weather
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“Hidden” Markov Models

Observations are a probabilistic function of 
state

Underlying state sequence is not observable 
(hidden)

First-order assumption

Output independence: observations are 
dependent only on the state that generated 
them, not on eachother.
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Example: 2-Coins, 
Observable Markov Process

Observations
Head
Tail

Observed outcomes do 
not uniquely define state 
sequence

Transition Probabilities,
1
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Urn-and-Ball Illustration

A Genie plays a game with a blind observer
1. Genie initially selects an Urn at random
2. Genie picks a colored ball, tells blind observer the color
3. Genie puts ball back in Urn
4. Genie moves to next Urn based on random selection 

procedure from current Urn.
5. Steps 2-4 repeated



Automatic Speech Recognition: From Theory to Practice 15
T-61.184T-61.184

Urn-and-Ball Illustration

Observations:  
The color sequence of the balls

States:
The identity of the urn

State-Transition:
The process of selecting the urns
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Urn-and-Ball Illustration

Observation sequence:  R B Y Y G B Y G R …
Individual colors (observations) don’t reveal urn (state)
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Discrete Symbol Observation HMM
A set of N states

Transition Probabilities

A set of M observation 
symbols

Probability Distribution
(for state j, symbol k)
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Discrete Symbol Observation HMM

Also characterized by:
An initial state distribution

Specification thus requires
2 model parameters, N and M
Specification of M symbols
3 probability measures A,B,π
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Left-to-Right HMMs
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Ergodic HMMs
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HMM as a Symbol Generator

Given parameters N, M, A, B, and π, HMMs can generate 
an observation sequence,

1. Choose initial state              from init. state distribution π
2. Set 
3. Choose                        according to distribution
4. Transition to set state                    according to state-
transition probability distribution
5. Set                       go to step 3
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HMM as a Symbol Generator

Example output from symbol generation

We can think of the HMM as generating the observation 
sequence as it transitions from state to state.  

Observation

State

T…654321Time, t

1q 2q 3q 4q 5q 6q Tq
1o 2o 3o 4o 5o 6o To
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Three Interesting Problems
Problem 1: Scoring & Evaluation

How to efficiently compute the probability of an 
observation sequence (O) given a model (λ)?  P(O| λ)

Problem 2: Decoding
Given an observation sequence (O) and a model (λ), how 
do we determine the corresponding state-sequence (q) 
that “best explains” how the observations were generated?

Problem 3: Training
How to adjust model parameters (λ = {A,B,π}) to maximize 
probability of generating a given observation sequence? 
maximize P(O| λ).
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Problem 1: Scoring and Evaluation

Given an observation sequence, 

Want to compute probability of generating it:

Let’s assume a particular sequence of states,
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Problem 1: Scoring and Evaluation

Using the chain rule we can decompose the problem by 
summing over all possible state sequences,

The first term relates to the likelihood of generating the 
observed symbol sequence given the assumed state 
sequence.

The second term relates to how likely the system is to 
step through those sequence of states.
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Problem 1: Scoring and Evaluation

Probability of the observation sequence given 
the state sequence,

Probability of the state sequence,
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Problem 1: Scoring and Evaluation

Using the chain rule,

This is not practical to compute.  For N states, T 
observations, the number of state sequences is:
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Forward Algorithm
Definition:

(Probability of seeing observations o1 to ot and 
ending at state i given HMM λ)

1. Initialization

2. Induction

3. Termination
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Forward Algorithm Illustration
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Forward Algorithm Example
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Given the above HMM with discrete observations “A” and 
“B”, what is the probability of generating the sequence 
“O = {A,A,B}”?

In other words, find P( O={A,A,B} | λ )
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Forward Algorithm Example
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t=0
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0.48
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Answer:
P(O|λ)=

0.03+0.13
= 0.16

Answer:
P(O|λ)=

0.03+0.13
= 0.16



Automatic Speech Recognition: From Theory to Practice 32
T-61.184T-61.184

Backward Algorithm

Definition:

Probability of observation sequence ot+1 to oT
given state i at time t and HMM λ

Initialization

Induction
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Backward Algorithm Illustration
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Backward Algorithm Example
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Problem 1: Scoring and Evaluation

In fact, there are 2 ways to compute

Computation of each term is 
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Problem 2: Decoding

Given an observation sequence, 

Find the single best sequence of states,

Which maximizes,
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Solution: Viterbi Algorithm

Define:

“Highest probable state sequence that 
accounts for observations 1 through t-1
and ends in state i and time t”.
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Viterbi Algorithm Illustration
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Viterbi Algorithm
1. Initialization

2. Recursion

3. Termination

4. Path Back trace
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Viterbi Algorithm Illustration
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Viterbi Algorithm in Log-Domain

Due to numerical underflow issues, it is often common to 
conduct the Viterbi algorithm in the log-domain,

Viterbi search in speech recognition systems is 
implemented in the log-domain for example.
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Viterbi Algorithm in Log-Domain
1. Initialization

2. Recursion

3. Termination

4. Path Back trace
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Problem 3: Training

Train parameters of HMM
Tune λ to maximize P(O| λ)
No efficient algorithm for global optimum
Efficient iterative algorithm finds a local optimum

(Baum-Welch) Forward-Backward Algorithm
Compute probabilities using current model λ
Refine λ λ based on computed values
Uses α and β from forward and backward algorithms
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Forward-Backward Algorithm

Define:

“Probability of being in state i at time t
and state j at time t+1 given the model 
and observation sequence”
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Forward-Backward Algorithm
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Forward-Backward Algorithm
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Forward-Backward Algorithm
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Forward-Backward Algorithm

Using these definitions, we can compute the 
initial state occupancy probability,

1 at time  statein   timesofnumber   expected == tiiπ

)(1 iγ=
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Forward-Backward Algorithm
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Forward-Backward Algorithm
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It can be shown
That

P(O|λ) > P(O| λ)

Unless
λ= λ

It can be shown
That

P(O|λ) > P(O| λ)

Unless
λ= λ

Forward-Backward Algorithm

1. Initialize λ=(A,B,π)

2. Compute α, β, and ξ

3. Estimate λ = (A,B, π)

4. Replace λ with λ

5. If not converged go to 2
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FB Algorithm Satisfies Constraints:
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Continuous Observation Densities

Discussions up until this point have considered 
observations characterized by discrete symbols

Often, we work with continuous valued data

Can convert continuous variables to discrete 
symbols using a Vector Quantizer (VQ) 
codebook [with information loss]

How to model continuous observations 
directly?
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Mixture Gaussian PDFs

Mixture Gaussian PDF with M components,

Constraints on the mixture weights,
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Definition

Probability of being in state j at time t with the 
kth mixture component accounting for ot:
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Resulting Equations for 
Mixture Weight & Mean Update
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Resulting Equations for 
Transition Matrix & Variance Update

Transition probability aij same as case 
for discrete symbols.  Covariance Matrix:
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Estimation from Multiple 
Observation Sequences

We estimate HMM parameters from multiple 
examples of speech:

Collected from different speakers
In different contexts

We attempt to model variability in producing 
each sound unit by estimating parameters from 
large corpora of speech data.
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Multiple Observations

Assume K training patterns (observation 
sequences),

Where,

And,
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Transition Probabilities
with Multiple Observations
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Observation Probabilities
with Multiple Observations
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Single State HMM Example

How to estimate the parameters of a single-state 
HMM model with M component Gaussians?,
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Single State HMM Example

Define probability of tth observation being generated by 
the kth mixture component,

Note that “k” (bk) here refers to mixture component, not 
HMM state.  We are assuming just 1 HMM state.
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Single State HMM Update Equations
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Mixture Gaussian (1-D case)

-7.5 -5.5 -3.5 -1.5 0.5 2.5 4.5 6.5

Example: 3 mixtures used to model underlying 
random process of 3 Gaussians
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Homework #3

You will estimate the parameters of a single 
state multivariate HMM given a sequence of 
observations (O).  

Training parameters (observations) are MFCCs 
(13 dimensional) from 10 speakers

Test parameters: from unknown speakers… 
which speaker most likely produced the 
sequence?
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Homework #3

Can compute the probability of generating the 
observation sequence for each estimated 
single-state HMM:

Find the model which has the maximum log-
probability…
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HMM Assumptions

First-Order Markov Chain
Probability of transitioning to a state only dependents on the 
current state

Time-independence of State Transitions
Transitioning from state A to state B is independent of time

Observation Independence
Observations don’t depend on each other, just on the states that
generated them

(sometimes) Left-to-Right Topology
As we will see, it is generally assumed that a left-to-right HMM is 
used to model speech units (phonemes)
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Important Concepts from Today

Do you understand the basic idea of an HMM?

Could you implement the Viterbi Algorithm if 
you had to?

Can you estimate at least the parameters of a 
single-state HMM (mixture-Gaussians)?  

What assumptions do HMMs impose on the data 
being modeled?
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Next Week

How to use HMMs for modeling speech units?

Consider major strategies for acoustic training

How to model context dependencies using 
HMMs

Some practical notes on HMM training for 
speech recognition


