T-61.184 Automatic Speech Recognition: From Theory to Practice

http://www.cis.hut.fi/Opinnot/T-61.184/ September 20, 2004

Prof. Bryan Pellom

Department of Computer Science Center for Spoken Language Research University of Colorado

pellom@cslr.colorado.edu

T-61.184

Speech Production and Phonetics

- Peter Ladefoged, "A Course In Phonetics," Harcourt Brace Jovanovich, ISBN 0-15-500173-6
- Excellent introductory reference to this material

Speech Production Anatomy

Speech Production Anatomy

Vocal Tract

Consists of the pharyngeal and oral cavities

Articulators

- Components of the vocal tract which move to produce various speech sounds
- □ Include: vocal folds, velum, lips, tongue, teeth

Source-Filter Representation of Speech Production

- Production viewed as an acoustic filtering operation
- Larynx and lungs provide input or <u>source</u> <u>excitation</u>
- Vocal and nasal tracts act as <u>filter</u>. Shape the spectrum of the resulting signal

Describing Sounds

- The study of speech sounds and their production, classification and transcription is known as <u>phonetics</u>
- A <u>phoneme</u> is an abstract unit that can be used for writing a language down in a systematic or unambiguous way

Sub-classifications of phonemes

- □ <u>Vowels</u> air passes freely through resonators
- Consonants air passes partially or totally obstructed in one or more places as it passes through the resonators

Automatic Speech Recognition: From Theory to Practice

Time-Domain Waveform Example

Phonetic Alphabets

- Allow us to describe the primitive sounds that make up a language
- Each language will have a unique set of phonemes
- Useful for speech recognition since words can be represented by sequences of phonemes as described by a phonetic alphabet.

Automatic Speech Recognition: From Theory to Practice

International Phonetic Alphabet (IPA)

- Phonetic representation standard which describes sounds in most/all world languages
- IPA last published in 1993 and updated in 1996
- Issue: character set difficult to manipulate on a computer...
- http://www2.arts.gla.ac.uk/IPA/ipa.html

Automatic Speech Recognition: From Theory to Practice

IPA Consonants

THE INTERNATIONAL PHONETIC ALPHABET (revised to 1993, updated 1996)

CONSONANTS (PULMONIC)

© 1996 IPA

	Bila	Bilabial Labioder		dental	Dental Alveolar Postalveolar		Retr	oflex	Palatal		Velar		Uvular		Pharyngeal		Glottal					
Plosive	р	b					t	d			t	þ	с	£	k	g	q	G			5	
Nasal		m		ŋ				n				η		ր		ŋ		Ν				
Trill		в						r										R				
Tap or Flap								ſ				r										
Fricative	φ	β	f	v	θ	ð	s	Z	ſ	3	Ş	$\mathbf{Z}_{\!\!\!\!\!\!\!\!\!}$	ç	j	х	¥	χ	R	ħ	ſ	h	ĥ
Lateral fricative							ł	ķ														
Approximant				υ				I.				Ł		j		щ						
Lateral approximant								1				l		λ		L						

Where symbols appear in pairs, the one to the right represents a voiced consonant. Shaded areas denote articulations judged impossible.

IPA Vowels VOWELS Front Central Back H Close u u Ι υ Υ 0 е A Close-mid θ И ε Э œ Open-mid æ a n Œ Open П Where symbols appear in pairs, the one to the right represents a rounded vowel. T-61.184

American English Phonemes (IPA)

PHONEME	EXAMPLE	PHONEME	EXAMPLE	PHONEME	EXAMPLE
/i ^y /	beat	/s/	see	/w/	wet
/1/	bit	/š/	she	/r/	red
/eº/	bait	/f/	fee	/1/	let
/ε/	bet	/0/	thief	/y/	yet
/æ/	bat	/z/	Z	/m/	meet
/a/	Bob	/ž/	Gigi	/n/	neat
/ɔ/	bought	/v/	V	/ŋ/	sing
///	but	/ð/	thee	/č/	church
/o ^w /	boat	/p/	pea	/ĭ/	judge
/ʊ/	book	/t/	tea	/h/	heat
/u ^w /	boot	/k/	key		
/3~/	Burt	/Ь/	bee		
/a ^y /	bite	/d/	Dee		
/5/	Boyd	/g/	geese		
/a ^w /	bout				
/ə/	about				

Table from MIT Course Notes: 6.345 Automatic Speech Recognition, Spring 2003

Alternative Phonetic Alphabets

ARPAbet

□ English only ASCII representation

□ Phoneme units represented by 1-2 letters

Similar representation used by CMU Sphinx-II recognizer,

http://www.speech.cs.cmu.edu/cgi-bin/cmudict

SAMPA

Speech Assessment Methods Phonetic Alphabet

Computer Readable representation

□ Maps symbols of the IPA into ASCII codes

Automatic Speech Recognition: From Theory to Practice

CMU Sphinx-II Phonetic Symbols

Phone	Example	Phone	Example	Phone	Example
AA	odd	EY	ate	P	pee
AE	<u>a</u> t	F	fee	PD	li <u>p</u>
AH	h <u>u</u> t	G	<u>g</u> reen	R	<u>r</u> ead
AO	<u>ou</u> ght	GD	ba <u>g</u>	S	sea
AW	COW	HH	he	SH	she
AX	<u>a</u> bide	IH	<u>i</u> t	Т	tea
AXR	us <u>er</u>	IX	acid	TD	li <u>t</u>
AY	h <u>i</u> de	IY	<u>ea</u> t	ТН	<u>th</u> eta
В	b <u>e</u>	JH	gee	TS	bi <u>ts</u>
BD	Du <u>b</u>	K	<u>k</u> ey	UH	h <u>oo</u> d
СН	<u>ch</u> eese	KD	li <u>ck</u>	UW	t <u>wo</u>
D	dee	L	lee	v	vee
DD	du <u>d</u>	М	me	W	we
DH	thee	N	<u>n</u> ote	Y	<u>y</u> ield
DX	ma <u>tt</u> er	NG	pi <u>ng</u>	Z	zee
EH	<u>e</u> d	OW	oat	ZH	sei <u>z</u> ure
ER	hurt	OY	t <u>oy</u>	SIL	(silence)

Example Words and Corresponding CMU Dictionary Transcriptions basement B EY S M AX N TD Bryan B R AY AX N perfect P AXR F EH KD TD speech S P IY CH recognize R EH K AX G N AY Z

Automatic Speech Recognition: From Theory to Practice

Classifications of Speech Sounds

Voiced vs. voiceless

□ Voiced if vocal chords vibrate

Nasal vs. Oral

Nasal if air travels through nasal cavity and oral cavity closed

Consonant vs. Vowel

□ Consonants: obstruction in air stream above the glottis. The <u>Glottis</u> is defined as the space between the vocal cords.

Lateral vs. Non-lateral

Non-lateral If the air stream passes through the middle of the oral cavity (compared to along side the oral cavity)

Consonants and Vowels

Consonants are characterized by:

- □ Place of articulation
- □ Manner of articulation
- Voicing

Vowels are characterized by:

- □ lip position
- □ tongue height
- □ tongue advancement

Automatic Speech Recognition: From Theory to Practice

Places of Articulation

- Biliabial
- Labio-dental
- Dental
- Alveolar
- Retroflex
- Palato-Alveolar
- Palatal
- Velar

Made with the two lips {P,B,M} Lower lip & upper front teeth {F,V} Tongue tip or blade & upper front teeth {TH,DH} Tongue tip or blade & alveolar ridge {T,D,N,...} Tongue tip & back of the alveolar ridge {R} Tongue blade & back of the alveolar ridge {SH} Front of the tongue & hard palate {Y,ZH} Back of the tongue & soft palate {K,G,NG}

Manners of Articulation

Stop

□ complete obstruction with sudden (explosive) release

Nasal

Airflow stopped in the oral cavity, soft palate down, airflow is through the nasal tract

Fricative

□ Articulators close together, turbulent airflow produced

Automatic Speech Recognition: From Theory to Practice

Manners of Articulation

Retroflex (Liquid)

□ Tip of the tongue is curled back slightly (/r/)

Lateral (Liquid)

Obstruction of the air stream at a point along the center of the oral tract, with incomplete closure between one or both sides of the tongue and the roof of the mouth (/l/)

Glide

□ Vowel-like, but initial position within a syllable (/y/, /w/)

American English Consonants by Place and Manner of Articulation

Place

		Labial	Labio-	Dental	Alveolar	Palatal	Velar	Glottal
			dental					
	Plosive	p b			t d		k g	?
Ľ	Nasal	т			п		ng	
ne	Fricative		fv	th dh	SZ	sh zh		h
lanı	Retroflex				r			
	Sonorant							
2	Lateral				l			
	sonorant							
	Glide	W				<i>y</i>		

American English Unvoiced Fricatives

Figure from MIT Course Notes: 6.345 Automatic Speech Recognition, Spring 2003

T-61.184

Voiced vs. Unvoiced Fricatives

American English Unvoiced Stops

Voiced vs. Unvoiced Stops

Spectrogram of Nasals

Semivowels

Affricates

Describing Vowels

Velum Position

nasal vs. non-nasal

Lip Shape

Rounded vs. unrounded

Tongue height

- □ High, mid, low
- Correlated to first formant position

Tongue advancement

- □ Front, central, back
- Correlated to second formant position

American English Vowels

Coarticulation 8000 6000 4000 2000 Hz TH AY AY S AY SH AY F 500 0 300 300 400 ms n. 0 0 Notice position of 2nd formant onset for these words: "fie", "thigh", "sigh", "shy" http://hctv.humnet.ucla.edu/departments/linguistics/VowelsandConsonants **T-61.184** Automatic Speech Recognition: From Theory to Practice

Spectrogram Reading Video

- "Speech as Eyes See It" (12 minute video)
- 1977-1978 video by Ron Cole and Victor Zue
- After 2000-3000 hours of training: phonemes and words can be transcribed from a spectrogram alone
- 80-90% agreement on segments
- Provided insight into the speech recognition problem during the 1970's

Review: Probability & Statistics for Speech Recognition

Automatic Speech Recognition: From Theory to Practice

Relative-Frequency and Probability

Relative Frequency of "A":

□ Experiment is performed *N* times

□ With 4 possible outcomes: *A*, *B*, *C*, *D*

 \Box **N**_A is number of times event **A** occurs:

$$N_A + N_B + N_C + N_D = N$$

$$r(A) = \frac{N_A}{N}$$

P(A)

Defined as "the probability of event A"

Relative Frequency that event A would occur if an experiment was repeated many times

Mutually Exclusive Events

For <u>mutually exclusive</u> events A, B, C, ..., M:

$0 \le P(A) \le 1$

$$P(A) + P(B) + P(C) + \dots + P(M) = 1$$

P(A) = 0 represents impossible event P(A) = 1 represents certain event

Automatic Speech Recognition: From Theory to Practice

Joint and Conditional Probability

P(AB) is the joint probability of event A and B both occurring

$$P(AB) = \lim_{N \to \infty} \frac{N_{AB}}{N}$$

P(A|B) is the <u>conditional probability</u> of event A given that event B has occurred:

$$P(A \mid B) = \frac{P(AB)}{P(B)} = \lim_{N \to \infty} \frac{N_{AB} / N}{N_B / N}$$

Automatic Speech Recognition: From Theory to Practice

Marginal Probability

Probability of an event occurring across all conditions

Statistically Independent Events

Occurrence of event A does not influence occurrence of event B:

P(AB) = P(A)P(B) $P(A \mid B) = P(A)$ $P(B \mid A) = P(B)$

Automatic Speech Recognition: From Theory to Practice

Random Variables

- Used to describe events in which the number of possible outcomes is infinite
- Values of the outcomes can not be predicted with certainty
- Distribution of outcome values is known

Probability Distribution Functions

The probability of the event that the random variable X is less than or equal to the allowed value x:

Probability Distribution Functions

Properties:

 $0 \le F_X(x) \le 1 \qquad -\infty < x < \infty$ $F_X(-\infty) = 0 \quad \text{and} \quad F_X(\infty) = 1$ $F_X(x) \text{ is nondecreasing as } x \text{ increases}$ $P(x_1 < X \le x_2) = F_X(x_2) - F_X(x_1)$

Automatic Speech Recognition: From Theory to Practice

Probability Density Functions (PDF)

Derivative of probability distribution function,

$$f_X(x) = \frac{dF_X(x)}{dx}$$

Interpretation:

$$f_X(x) = P(x < X \le x + dx)$$

Automatic Speech Recognition: From Theory to Practice

Probability Density Functions (PDF)

Properties

$$f_X(x) \ge 0 \quad -\infty < x < \infty$$
$$\int_{-\infty}^{\infty} f_X(x) dx = 1$$
$$F_X(x) = \int_{-\infty}^{x} f_X(u) du$$
$$\int_{x_1}^{x_2} f_X(x) dx = P(x_1 < X \le x_2)$$

Automatic Speech Recognition: From Theory to Practice

Mean and Variance

Expectation or Mean of a random variable X

$$E(X) = \int_{-\infty}^{\infty} x f_X(x) dx$$

Variance of a random variable X

$$\mu = E(X)$$

$$Var(X) = \sigma^{2} = E[(X - \mu)^{2}]$$

$$Var(X) = \sigma^{2} = E(X^{2}) - [E(X)]^{2}$$

Mean and Variance

Variance properties (if X and Y are independent)

Var(X + Y) = Var(X) + Var(Y) $Var(aX) = a^{2}Var(X)$ $Var(a_{1}X_{1} + \dots + a_{n}X_{n} + b) =$ $a_{1}^{2}Var(X_{1}) + \dots + a_{n}^{2}Var(X_{n})$

Automatic Speech Recognition: From Theory to Practice

Gaussian (Normal) Distribution

$$f(X = x \mid \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right]$$

$$\mu = E[x] = \frac{1}{N} \sum_{n=1}^{N} x_n$$

$$\sigma^2 = E(X^2) - \left[E(X)\right]^2 = \frac{1}{N} \sum_{n=1}^{N} x_n^2 - \left[\frac{1}{N} \sum_{n=1}^{N} x_n\right]^2$$
Automatic Speech Recognition: From Theory to Practice
$$T-61.184$$
59

Multivariate Distributions

- Characterize more than one random variable at a time
- Example: Features for speech recognition
 - In speech recognition we typically compute 39-dimensional feature vectors (more about that later)
 - □ 100 feature vectors per second of audio
- Often want to compute the likelihood of the observed features given known (estimated) distribution which is being used to model some part of a phoneme (more about that later!).

Automatic Speech Recognition: From Theory to Practice

Diagonal Covariance Assumption

Most speech recognition systems assume diagonal covariance matrices

Data sparseness issue:

Diagonal Covariance Assumption

Inverting a diagonal matrix involves simply inverting the elements along the diagonal:

$$\Sigma^{-1} = \begin{bmatrix} \frac{1}{\sigma_{11}^2} & 0 & 0 & 0 \\ 0 & \frac{1}{\sigma_{22}^2} & 0 & 0 \\ 0 & 0 & \frac{1}{\sigma_{33}^2} & 0 \\ 0 & 0 & 0 & \frac{1}{\sigma_{44}^2} \end{bmatrix}$$

Automatic Speech Recognition: From Theory to Practice

Multivariate Gaussians with Diagonal Covariance Matrices

Assuming a diagonal covariance matrix,

Multivariate Mixture Gaussians

- Distribution is governed by several Gaussian density functions,
- Sum of Gaussians (w_m = mixture weight)

$$f(x) = \sum_{m=1}^{M} w_m N_m(x; \mu_m, \Sigma_m)$$

= $\sum_{m=1}^{M} \frac{w_m}{(2\pi)^{n/2} |\Sigma_m|^{1/2}} \exp\left[-\frac{1}{2}(x - \mu_m)^T \Sigma_m^{-1}(x - u_m)\right]$

Automatic Speech Recognition: From Theory to Practice

Speech Recognition Problem Formulation

Automatic Speech Recognition: From Theory to Practice

Problem Description

 Given a sequence of observations (evidence) from an audio signal,

$$\mathbf{O} = o_1 o_2 \cdots o_T$$

Determine the underlying word sequence,

$$\mathbf{W} = w_1 w_2 \cdots w_m$$

Number of words (m) unknown, observation sequence is variable length (T)

Problem Formulation

Using Bayes Rule,

$$P(W|O) = \frac{P(O|W)P(W)}{P(O)}$$

Since P(O) does not impact optimization,

$$\hat{W} = \underset{W}{\operatorname{arg\,max}} P(W | O)$$
$$= \underset{W}{\operatorname{arg\,max}} P(O | W) P(W)$$

Problem Formulation

Let's assume words can be represented by a sequence of states, S,

$$\hat{W} = \arg \max_{W} P(O | W)P(W)$$
$$= \arg \max_{W} \sum_{S} P(O | S)P(S | W)P(W)$$

- Words \rightarrow Phonemes \rightarrow States
- States represent smaller pieces of phonemes

Automatic Speech Recognition: From Theory to Practice
Problem Formulation

- Optimize: $\hat{W} = \underset{W}{\operatorname{arg\,max}} \sum_{S} P(O \mid S) P(S \mid W) P(W)$
- Practical Realization,

P(O | S)

P(S | W)

P(w

- Observation (feature) sequence
- Acoustic Model
 - Lexicon / Pronunciation Model

Language Model

T-61.184

Problem Formulation

- Optimization desires most likely word sequence given observations (evidence)
- Can not evaluate all possible word / state sequences (too many possibilities!)

We need:

- □ To define a representation for modeling states (HMMs...)
- A means for "approximately" searching for the best word / state sequence given the evidence (Viterbi Algorithm)
- □ And a few other tricks up our sleeves to make it FASTER!

Hidden Markov Models (HMMs)

- Observation vectors are assumed to be "generated" by a Markov Model
- HMM: A finite-state machine that at each time t that a state j is entered, an observation is emitted with probability density b_i(o_t)
- Transition from state i to state j modeled with probability a_{ij}

Automatic Speech Recognition: From Theory to Practice

"Beads-on-a-String" HMM Representation

HMMs with Mixtures of Gaussians

Multivariate Mixture-Gaussian distribution,

$$b_{j}(o_{t}) = \sum_{m=1}^{M} \frac{w_{m}}{\sqrt{(2\pi)^{n} |\Sigma_{j}|}} e^{-\frac{1}{2}(o_{t} - \mu_{j})^{T} \Sigma_{j}^{-1}(o_{t} - \mu_{j})}$$

- Model parameters are (1) means, (2) variances, and (3) mixture weights
- Sum of Gaussians can model complex distributions

Automatic Speech Recognition: From Theory to Practice

T-61.184

Hidden Markov Model Based ASR

- Observation sequence assumed to be known
- Probability of a particular state sequence can be computed
- Underlying state sequence is unknown, "hidden"

Automatic Speech Recognition: From Theory to Practice

Components of a Speech Recognizer

Topics for Next Time

- An introduction to hearing
- Speech Detection
- Frame-based Speech Analysis
- Feature Extraction Methods for Speech Recognition

Automatic Speech Recognition: From Theory to Practice

T-61.184