

A Spatio-Temporal and a Probablistic Approach for Video Retrieval

Zhirong Yang 5.4.2008

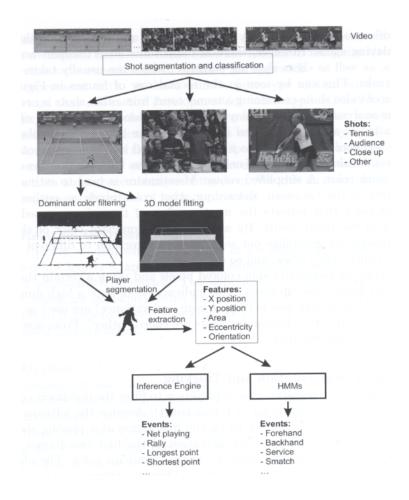
Introduction

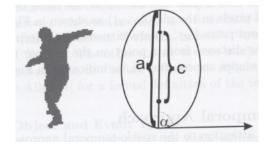
- To extract high-level concepts from video footage
 - spatio-temporal approach
 - hidden Markov model
- Concentrate on the tennis case
- Empirical results with a prototype system are provided

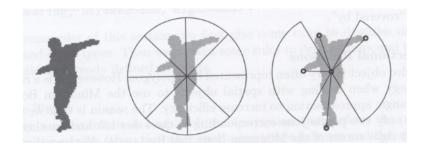
LABORATORY OF COMPUTER ADAPTIVE INFORMATICS AND INFORMATION SCIENCE RESEARCH CENTRE

Tennis Video Analysis

CIS







CIS 🧔

Spatio-temporal Approach

- Spatial Relations
 - topological: e.g. meet, equal, overlap
 - directional: e.g. north, east, north-east
- Temporal Relations
 - for example: before, during, starts, finishes

Rules for Object and Event Types

• Feature types:

{f1, f2, f3, f4, f5, f6, f7, f8, f9}

Visual object and audio event types:

{SpatialObject, Ball, Net} {Cheering, StrokeSound, SighSound}

• Simple rules:

PlayerCloserToCamera::=

{r1:SpatialObject, r2:rect(0,144,384,288)},

{700<f7(r1)<1200}, {contain(r2,r1)}

PlayerNearTheNet::=

{o1:PlayerCloserToCamera}, {o1.name="V.Williams"},
{y_distance(o1,Net)<50}, {duration>60}

M.Petković. Content-Based Video Retrieval Supportedc by Database Technology. PhD thesis, Centre for Telematich and Information Technology, Enshede, The Netherlands, 2003

cont.

• Compound rules:

ForehandTouch::=

{o1:PlayerCloserToCamera, o2:ball}, {s:StrokeSound},

{IsRighthanded(o1)}, {overlap(o1,o2), east(o2,o1)}

PlayerInRightCorner::=

{o1:PlayerCloserToCamera}, {f6.x(o1)>=190, f6.y(o1)>=170} LtRRally::=

{e1,e2:PlayerInLeftCorner, e3,e4:PlayerInRightCorner},

{e1.o1=e2.o1=e3.o1=e4.o1},

{meet(e1,e3), meet(e3,e2), meet(e2,e4)}

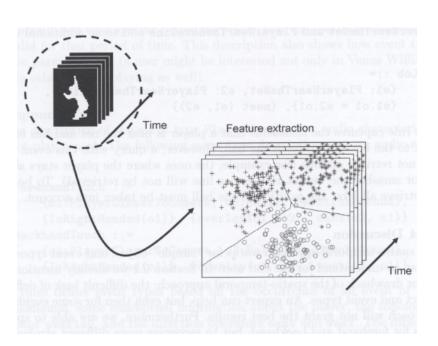
Lob::=

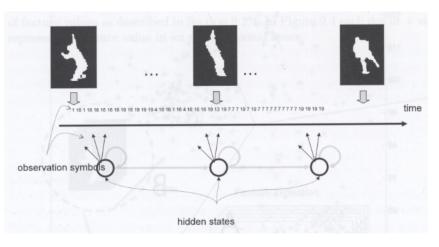
{e1:PlayerNearTheNet, e2:PlayerNearTheBaseline}
{e1.o1=e2.o1}, {meet(e1,e2)}

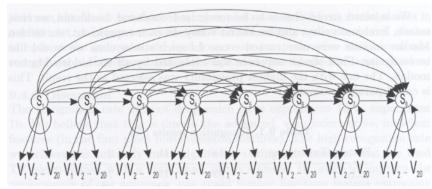
LABORATORY OF COMPUTER AND INFORMATION SCIENCE

Stroke Recognition Using Hidden Markov Models

CIS





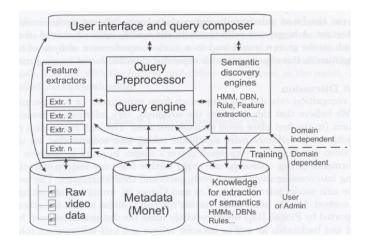


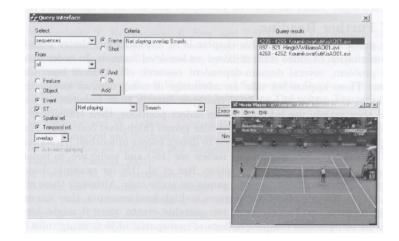
Recognition Results (%)

Feature/Experiment	1a	1b	2	
f ₈₋₁₁	82	79	76	V
f ₈₋₁₃	85	82	80	
f _{8-9,12-13}	81	78	76	
f8-9,22-23	89.	88	87	
f ₈₋₂₃	86	82	79	
f9-11,22-23	91	89	88	
f_{14-21}	85	78	78	
f_{14-23}	93	87	86	

- Recognizing strokes of 6 classes
 - 1a: same player in training and evaluation
 - 1b: different player groups for training and evaluation
- Recognizing strokes of 11 classes
 - 2: same setting as 1b, with new stroke classes added

CIS





SELECT vi.frame_seq FROM vidso vi

WHERE s_contains (vi.frame_seq,

SmashOnNet=({e1: PlayerNearTheNet, e2:Smash},

{overlap(e2,e1)}, e1.o1=e2.o1))=1 AND

vi.name='KournikovaKutikis'

Summary

- A framework for automatic extraction of highlevel concepts from raw video data
 - rule-based component
 - stochastic component
- Integrated retrieval system for particular domain of tennis game videos
- The mapping from features to high-level concepts is still restricted, and more advanced techniques are required.