
Chapter 4: Searching for Text Documents
Ville Turunen

ville.t.turunen@tkk.fi

Chapter 4: Searching for Text Documents – p.1/32

Introduction

Multimedia documents usually contain textual parts

Techniques for text retrieval have been developed in the area
of information retrieval (IR)

Professional users
Libraries, archives, etc
Complicated Boolean queries

Novice users
Google etc.
Natural language queries

Chapter 4: Searching for Text Documents – p.2/32

Text Documents and Indexing

Document: list of words and identification

Indexing: Deriving and storing metadata from documents

For text documents, terms describe the contents
1. Manually assigned terms by professional users
2. Automatically derived terms

Chapter 4: Searching for Text Documents – p.3/32

Steps in automatic indexing

1. Identify all words and put to lower case

2. Remove stop words
Words that have little meaning (“the”, “it”...)

3. Stemming or lemmatization
Reduce inflected word forms to their stem:

walking, walked → walk

More complex languages (e.g. Finnish) require more
complex algorithms (e.g. morphological analysis)

4. Construct inverted index
References to documents for each term

Chapter 4: Searching for Text Documents – p.4/32

Query Formulation

Users need to represent their information need

Professional searcher knows the document collection and the
assigned terms and can use Boolean operators to compose
the query

End user likes to communicate in natural language
Derive terms from the query similarly as for the
documents (stemming, stop word removal)

Chapter 4: Searching for Text Documents – p.5/32

Matching

Matching algorithm compares the query against the index

1. Exact matching algorithms
yes/no decision: the document either matches the query
or not

Boolean model

2. Inexact matching algorithms
System returns a ranked list of documents
Relevant documents should be listed first

Vector space model
Probabilistic model
p-norm extended Boolean model
Bayesian network model

Chapter 4: Searching for Text Documents – p.6/32

Boolean Model 1/2

A query term defines a set of documents

Terms combined with Boolean operators

Chapter 4: Searching for Text Documents – p.7/32

Boolean Model 2/2

Proximity searching
ADJ: matches if words are adjacent
NEAR: matches if words are near each other

Wildcards
Mask part of query: dog* matches dog, dogs, dogma

Pros
Very controllable

Cons
Does not rank documents
Expert knowledge needed
More complex than real needs of users would justify

Chapter 4: Searching for Text Documents – p.8/32

Vector Space Model 1/2

Documents are ranked by their degree of similarity to the
query

Documents and queries are represented as vectors in
high-dimensional Euclidean space

document: d = (d1, d2, · · · , dm)

each dk (1 ≤ k ≤ m) is associated with an index term
similarly for a query: q = (q1, q2, · · · , qm)

Similarity measure: cosine of the angle that separates the
vectors d and q:

score(d,q) =

∑m
k=1 dk · qk

√
∑m

k=1(dk)2 ·
√

∑m
k=1(qk)2

Chapter 4: Searching for Text Documents – p.9/32

Vector Space Model 2/2

Chapter 4: Searching for Text Documents – p.10/32

Relevance feedback 1/2

If relevance of some documents is know (e.g. given by the
user), results can be refined

Move the query vector towards the centroid of the known
relevant documents and away from the centroid of known
non-relevant documents

qnew = qold +
1

r

r
∑

i=1

d
(i)
rel −

1

n

n
∑

i=1

d
(i)
nonrel (1)

qold is the original query, qnew is the revised query,
d

(i)
rel is one of the r documents selected as relevant,

d
(i)
nonrel is one of the n documents selected as non-relevant

Assumes normalized vectors

Chapter 4: Searching for Text Documents – p.11/32

Relevance feedback 2/2

Chapter 4: Searching for Text Documents – p.12/32

Vector Space Model: Discussion

Pros
Intuitive, easily explained

Cons
Does not define what the values of the vector components
should be (⇒ term weighting)
Not possible to include term dependencies, e.g. phrases
or adjacent terms

Chapter 4: Searching for Text Documents – p.13/32

Term Weighting

Defines vector component values dk based on term statistics

Single most important factor in the performance of IR
systems

Term frequency, tf

Number of times term occurs within a document

Inverse document frequency, idf

Inverse of the number of documents a term occurs in

tf.idf : dk = qk = tf · logN
df

Hundreds of variations exist

Chapter 4: Searching for Text Documents – p.14/32

Latent Semantic Indexing

Arrange document vectors to a term-document matrix

Singular value decomposition is used to project the matrix to
fewer dimensions

These dimensions are hoped to match the “true”, latent,
meaning of the terms

Chapter 4: Searching for Text Documents – p.15/32

Probabilistic Model

Rank the documents in order of their probability of relevance

Motivation: similarity criterion and relevance criterion do not
always coincide

Given query term social and known relevances:

P (rel|social) = 1/1000

P (rel|not social) =
10/9000

In this case, rank by dissimilarity would be optimal

Chapter 4: Searching for Text Documents – p.16/32

Probability of Relevance 1/2

Let L ∈ {0, 1} be random variable “document is relevant”

Let a query contain n terms

To each document assign n random variables Dk (1 ≤ k ≤ n)
indicating “the document belongs to the subset indexed with
kth query term”

Chapter 4: Searching for Text Documents – p.17/32

Probability of Relevance 2/2

Independence assumption: In documents terms occur
independently from each other

P (social, political|L = 1) = P (social|L =
1) · P (political|L = 1)

Goal is to compute probability that document is relevant given
values for D1, D2, · · · , Dn.

Using Bayes rule and the independence assumption, the
score for the documents turns out to be:

P (L = 1|D1, · · · , Dn) α
∑

k∈m.terms log P (Dk=1|L=1)P (Dk=0|L=0)
P (Dk=1|L=0)P (Dk=0|L=1)

Chapter 4: Searching for Text Documents – p.18/32

Probabilistic Model: Discussion

Pros
Does not need additional term weighting

Cons
The distribution of terms over relevant and non-relevant
documents is required

Needed for P (Dk|L)
Relevance feedback or assumptions can be used

Only defines a partial ranking of the documents i.e.
documents in the same non-overlapping subset receive
same probability
E.g. a short query may return the same rank for first 100
documents

Chapter 4: Searching for Text Documents – p.19/32

p-norm Extended Boolean Model 1/2

Uses the idea of documents in vector space

For two terms:
point (1,1): both terms are present
point (0,0): both terms are absent

AND-queries should rank documents in order of increasing
distance from point (1,1)

OR-queries should rank in order of decreasing distance from
point (0,0)

score(d, a OR b) =
√

(da−0)2+(db−0)2

2

score(d, a AND b) = 1 −
√

(1−da)2+(1−db)2

2

Chapter 4: Searching for Text Documents – p.20/32

p-norm Extended Boolean Model 2/2

Use p-norm instead of Euclidean

Use weights for query terms

score(d,qOR(p)
) =

(
Pm

k=1(qk)p(dk)p

Pm
k=1(qk)p

)1/p

score(d,qAND(p)
) = 1 −

(
Pm

k=1(qk)p(1−dk)p

Pm
k=1(qk)p

)1/p

Pros
Performs well

Cons
Needs additional term weighting

Chapter 4: Searching for Text Documents – p.21/32

Bayesian Network Models

Bayesian network is an acyclic directed graph that encodes
probabilistic dependency relationships

Nodes are random variables, arrows indicate dependency

D = 1 means document is
relevant

T1, T2, T3 are query terms

Q = 1 means information
need is satisfied

P (D,T1, T2, T3, Q) =
P (D)P (T1|D)P (T2|D)P (T3|D)P (Q|T1, T2, T3)

Chapter 4: Searching for Text Documents – p.22/32

Bayesian Network Models

Rank documents by P (Q = 1|D = 1)

P (Q = 1|D = 1) = P (Q = 1, D = 1)/P (D = 1)

=

∑

t1,t2,t3
P (D = 1, T1 = t1, T2 = t2, T3 = t3, Q = 1)

P (D = 1)

P (Q|T1, T2, · · · , Tn) has 2n+1 possible values for a query of
length n

Simplification: use canonical forms

Suppose P (T1|D) = p1,P (T2|D) = p2 and P (T3|D) = p3 are
known

Chapter 4: Searching for Text Documents – p.23/32

Bayesian Network Models: Canonical forms

Pand(Q = 1|D = 1) = p1p2p3

Por(Q = 1|D = 1) = 1 − (1 − p1)(1 − p2)(1 − p3)

Psum(Q = 1|D = 1) = (p1 + p2 + p3)/3

Pwsum(Q = 1|D = 1) = w1p1 + w2p2 + w3p3

R1, R2 different
representations for D

Q1, Q2, Q3 different queries
for same need I

e.g. Q2 is evaluated as
or(and(T1, T2)T3) and Q3 as
wsum(T2, T3, T4)

Chapter 4: Searching for Text Documents – p.24/32

Bayesian Network Models: Discussion

Pros
Network topology can be used to combine evidence in a
complex way

Cons
P (Ti|D) need to be estimated
Calculation of probabilities take exponential time, if
canonical forms not used
However, approximation has same effect as changing
topology
Updating probabilities still intractable

Chapter 4: Searching for Text Documents – p.25/32

Language Model 1/4

Language model is a mathematical model of language

E.g. list of words and their frequencies

Language modeling studied extensively for automatic speech
recognition

For retrieval:
Build a language model for each document
Rank documents by probability that the language model of
each document generated the query

Chapter 4: Searching for Text Documents – p.26/32

Language Model 2/4: Urn metaphor

Someone selects one document

Draws at random ten words from this document (=query
terms)

Hands those ten words to the system

System infers from which document the words came from
Calculate for each document the probability that the ten
words were sampled from it
Rank accordingly

Some query terms may not occur in any relevant docs
Before drawing a word, decide randomly whether to draw
from a relevant doc or the entire collection
Called smoothing the language model distribution

Chapter 4: Searching for Text Documents – p.27/32

Language Model 3/4

The probability that a query T1, T2, · · · , Tn is sampled from D:

P (T1, T2, · · · , Tn|D) =
∏N

i=1((1 − λi)P (Ti) + λiP (Ti|D))

λi is the relevance weight

Rank documents by:

P (D|T1, T2, · · · , Tn) = P (T1,T2,··· ,Tn|D)P (D)
P (T1,T2,··· ,Tn)

P (T1, T2, · · · , Tn) same for all docs, omitted

Prior P (D) might be assumed uniform or proportional to
length

Chapter 4: Searching for Text Documents – p.28/32

Language Model 4/4

Term frequency tf(t, d) and document frequency df(t) can be
used to estimate P (T) and P (T |D)

P (Ti = ti|D = d) = tf(ti,d)
P

t tf(t,d)

P (Ti = ti) = df(ti)
P

t df(t)

or: P (Ti = ti) =
P

d tf(ti,d)
P

d

P

t tf(t,d)

Language model approach gives theoretical backup for using
tf.idf weighting

Chapter 4: Searching for Text Documents – p.29/32

PageRank in Google (1/2)

Focus on high quality results instead of similarity

Pages that have lots of links pointing to them are more
important

Select pages that contain all query terms (Boolean AND)

Matching pages are ranked by their PageRank

PR(A) = (1 − d) + d
(

PR(T1)
C(T1)

+ · · · + PR(Tn)
C(Tn)

)

,

PR(A) is PageRank of page A, PR(T1) is PageRank of
page T1, C(Ti) is the number of outgoing links from page
Ti and d is a damping factor
Recursive

Chapter 4: Searching for Text Documents – p.30/32

PageRank in Google (2/2)

Motivation: random surfer model
Random surfer visits a page with probability derived from
PR

Surfer randomly selects one link
Or: with probability (1 − d)/N surfer gets bored and jumps
to another random page

Chapter 4: Searching for Text Documents – p.31/32

References

[1] H.M Blanken, A.P. de Vries, A.P., H.E. Blok, and L. Feng (Eds.). Multimedia Retrieval.
Springer 2007.

[2] Scott C. Deerwester, Susan T. Dumais, Thomas K. Landauer, George W. Furnas, and
Richard A. Harshman. Indexing by latent semantic analysis. Journal of the American Society
of Information Science, 41(6):391–407, 1990.

[3] N. Fuhr. Probabilistic Models in Information Retrieval. The Computer Journal, 35(3):243–255,
1992.

[4] Djoerd Hiemstra. Using language models for information retrieval, Ph.D. thesis University of
Twente, 2001.

Chapter 4: Searching for Text Documents – p.32/32

	Introduction
	Text Documents and Indexing
	Steps in automatic indexing
	Query Formulation
	Matching
	Boolean Model 1/2
	Boolean Model 2/2
	Vector Space Model 1/2
	Vector Space Model 2/2
	Relevance feedback 1/2
	Relevance feedback 2/2
	Vector Space Model: Discussion
	Term Weighting
	Latent Semantic Indexing
	Probabilistic Model
	Probability of Relevance 1/2
	Probability of Relevance 2/2
	Probabilistic Model: Discussion
	p-norm Extended Boolean Model 1/2
	p-norm Extended Boolean Model 2/2
	Bayesian Network Models
	Bayesian Network Models
	Bayesian Network Models: Canonical forms
	Bayesian Network Models: Discussion
	Language Model 1/4
	Language Model 2/4: Urn metaphor
	Language Model 3/4
	Language Model 4/4
	PageRank in Google (1/2)
	PageRank in Google (2/2)
	References

