Semantic Video Indexing

T-61.6030 Multimedia Retrieval

Stevan Keraudy stevan.keraudy@tkk.fi

Helsinki University of Technology March 14, 2008

What is it?

- Query by keyword or tag is common
- Semantic Video Indexing aims at:
 - Analyzing the content of a video
 - Recognizing some concepts
 - Indexing the video depending on concepts
- It uses machine learning techniques to learn the concepts

Background

- Ch.2: Metadata
- Ch.3: Pattern recognition
- Ch.4,5,7: Unimodal media analysis

Outline

- Semantic pathfinder
 - Description
 - Content analysis step
 - Style analysis step
 - Context analysis step
 - Semantic pathfinder output
- Experiments on real-world data
 - Description
 - Results analysis

T-61.6030 Multimedia Retrieval

Semantic Pathfinder

- 3 consecutive analysis steps:
 - Content analysis step
 - Style analysis step
 - Context analysis step
- One step's output can be used for next one's input
- Depending on the concept, we might want to ignore some steps

Semantic Pathfinder

Data Set

- Focused on news video
- 184 hours of ABC and CNN news
- MPEG-1 format
- Training set: 120h (Jan. 98 Jun. 98)
- Test set: 64h (Oct. 98 Dec. 98)
- Analysis tries to recognize 32 concepts in this data set

Concept Lexicon

Beach

Bill Clinton

Building

Car

News subject

Monologue

Cartoon

Financial news

anchor

Clinton Thanksgiving

Overlayed text

free # STITA

NEWS

Graphics

People walking

Ice hockey

Madeleine Albright

Road

ANGE 53.33

377.000

Outdoor

Studio setting

People

Train

Physical

violence

Weather news

T-61.6030 Multimedia Retrieval

Analysis Step Architecture

- Semantic video indexing is a pattern recognition problem
 - Segment a video
 - Select relevant shots
 - Given pattern x, detect semantic concept w from shot i
 - Each step extracts x_i and learns p(w|x_i) for each concept w
- Support Vector Machine is used

Content Analysis Step

- 3 sub-steps:
 - Visual analysis: extract visual features
 - Text analysis: extract speech transcript
 - Multimodal analysis: combine both features

Content Analysis Step

Visual Analysis

- Regional visual concepts:
 - {colored clothing, concrete, fire, grassland, greenery, red carpet, sand, sky,...}
- Segmentation of each image frame using color invariance
- Invariant features extraction is computed for each pixel of each frame
- We use SVM to classify each pixel

Visual Analysis

- A combination over time is made
- We select one frame out of a sequence that represents the best the features
- This choice is made by an SVM
- The output is an image vector
 - For each regional visual concept, it indicates the percentage of pixels of this class

Visual Analysis

Textual Analysis

- Speech is transcribed into text
- Stop-words removal
- A new lexicon is created for every concept using training data
- We compare the text associated with shots with the lexicons
- Special treatment for *Persons* concept

Multimodal Analysis

- We concatenate visual analysis and textual analysis outputs
- We feed the supervised learning module

Style Analysis Step

- Video is viewed from a production perspective
- 4 production roles are detected by different algorithms
- Feature extraction is independent of the data set
- Then we use an iterative classification

Style Analysis Step

T-61.6030 Multimedia Retrieval

Layout

- 4 features are used:
 - Shot length
 - Overlayed text
 - Silence
 - Voice-over

Content

- 8 features are used:
 - Faces (frontal face detector)
 - Face location
 - Cars
 - Object motion
 - Frequent speaker (3 most frequent speakers)
 - Overlayed text length
 - Video text named entity
 - Voice named entity (from transcript)

Capture

- 3 features are used:
 - Camera distance (from size of faces)
 - Camera work (pan, tilt, zoom,...)
 - Camera motion

Context

- Enhance or reduce correlation between semantic concepts
- Reduces number of false positives
- Increases number of true positives
- E.g. co-occurence of space shuttle and bicycle is improbable
- It takes as input the output of content analysis step

Iterative Classification

- For each concept *w* in lexicon:
 - Take as input the output of content analysis step and results of style analysis step
 - Classify
 - Update content analysis step output
- The output of the whole iteration serves as an input to next analysis step

Style Analysis Step Output

- For each shot *i*
 - For each concepts *w* in lexicon
 - Return *p(w|i)*
- Output is made of all probabilities p(w|i)

Context Analysis Step

- Takes as input all concepts probabilities
- Learns relations between concepts

Semantic Pathfinder Output

- Output of context analysis step gives pathfinder global output
- For each concept w we get:
 - p(w|content)
 - p(w|content, style)
 - p(w|content, style, context)
- We select one of these outputs for each concept.

Semantic Pathfinder Output

Experiments Results

Semantic	Content	Style	Context	Semantic
concept	$analysis\ step$	$analysis\ step$	$analysis\ step$	${\it path finder}$
News subject monologue	0.55	1.00	1.00	1.00
Weather news	1.00	1.00	1.00	1.00
News anchor	0.98	0.98	0.99	0.99
Overlayed text	0.84	0.99	0.93	0.99
Sporting event	0.77	0.98	0.93	0.98
Studio setting	0.95	0.96	0.98	0.98
Graphics	0.92	0.90	0.91	0.91
People	0.73	0.78	0.91	0.91
Outdoor	0.62	0.83	0.90	0.90
Stock quotes	0.89	0.77	0.77	0.89
People walking	0.65	0.72	0.83	0.83
Car	0.63	0.81	0.75	0.75
Cartoon	0.71	0.69	0.75	0.75
Vegetation	0.72	0.64	0.70	0.72
Ice hockey	0.71	0.68	0.60	0.71
Financial news anchor	0.40	0.70	0.71	0.70
Baseball	0.54	0.43	0.47	0.54
Building	0.53	0.46	0.43	0.53
Road	0.43	0.53	0.51	0.51
American football	0.46	0.18	0.17	0.46
Boat	0.42	0.38	0.37	0.37
Physical violence	0.17	0.25	0.31	0.31
Basket scored	0.24	0.21	0.30	0.30
Animal	0.37	0.26	0.26	0.26
Bill Clinton	0.26	0.35	0.37	0.26
Golf	0.24	0.19	0.06	0.24
Beach	0.13	0.12	0.12	0.12
Madeleine Albright	0.12	0.05	0.04	0.12
Airplane take off	0.10	0.08	0.08	0.08
Bicycle	0.09	0.08	0.07	0.08
Train	0.07	0.07	0.03	0.07
Soccer	0.01	0.01	0.00	0.01
Mean	0.51	0.53	0.54	0.57

- 32 semantic concepts
- Precision is the percentage of correct shots
- Best results varies over concepts
 - Content: 12
 - Style: 5
 - Context: 15
- Global precision increases

T-61.6030 Multimedia Retrieval

Semantic Video Indexing

Style Analysis Influence

- Increase for 12 concepts
- Especially semantically rich concepts

T-61.6030 Multimedia Retrieval

Context Analysis Influence

- Increase for 13 concepts
- People profits from sport-related concepts
- Golf suffers from Outdoor and Vegetation

T-61.6030 Multimedia Retrieval

Applications

- Semantic Video Search Engines
- Have a look at MediaMill
 - http://www.science.uva.nl/research/mediamill/
 - Query-by-concept using 32 concepts
 - Query-by-keyword
 - Query-by-example

References

- Blanken et al., *Multimedia Retrieval*, Springer, 2007 (Chapter 8)
- All images are also from this book