Introduction	Generative Image Models	Generative Language Models	Combining Modalities	Conclusions

Chapter 6: Generative Probabilistic Models in Multimedia Retrieval

Sami Virpioja sami.virpioja@tkk.fi

Adaptive Informatics Research Centre Helsinki University of Technology

February 22, 2008

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Outline				
Introduction 00000000	Generative Image Models	Generative Language Models	Combining Modalities 0	Conclusions 0

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- 2 Generative Image Models
 - Gaussian Mixture Model for Images
 - Parameter Estimation
 - Example
- 3 Generative Language Models
 - Language Models for Text Retrieval
 - Parameter Estimation
 - Interpolation
- 4 Combining Multiple Modalities

5 Conclusions

00000000	0000000	00000000	0	0
Outling				

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

1 Introduction

- 2 Generative Image Models
 - Gaussian Mixture Model for Images
 - Parameter Estimation
 - Example
- 3 Generative Language Models
 - Language Models for Text Retrieval
 - Parameter Estimation
 - Interpolation
- 4 Combining Multiple Modalities
- 5 Conclusions

●0000000	00000000	000000000	O	O		
Classification Tasks in MR						

• Many multimedia retrieval tasks can be seen as problems of decision theory:

- Classification into finite set of classes (e.g. motorbike or bicycles or people or car)
- Detection of objects or events (true or false)
- Retrieval tasks (relevant or not relevant)
- Probabilistic approach is a very natural one: Given a sample x, return the most probable class c

Introduction	Generative Image Models	Generative Language Models	Combining Modalities	Conclusions
0000000				

Graphical Notation for Probabilistic Models

- Nodes are variables
 - Observed variables with solid shading
- Edges are dependencies
- Repetition indicated by boxes

Sampling with repeated choice of dice

Sampling from a single dice

▲ロ > ▲母 > ▲目 > ▲目 > ▲目 > ④ < ④ >

Introduction	Generative Image Models	Generative Language Models	Combining Modalities	Conclusions
0000000				

Discriminative vs. Generative Classification

- Goal: Find the best document $d \in \{d_1, d_2, \dots, d_n\}$ given the query q
- Discriminative classification:
 - Choose the most probable document given the query
 - Build a model for $P(D = d_i | Q = q)$
 - Typical methods: LDA, SVM, perceptrons
- Generative classification:
 - Choose the document that most likely generated the query
 - Build a model for $P(Q = q | D = d_i)$
 - Allows sampling from the joint distribution P(Q, D)

Introduction	Generative Image Models	Generative Language Models	Combining Modalities 0	Conclusions 0
Jigsaw	Example			

- A set of jigsaw puzzles in their boxes
- One piece is found outside the boxes
- How to select the correct box (without solving all the puzzles)?
- Clue: appereance (color, texture, etc.) of the piece compared to the images of the solved puzzles

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• Select the puzzle that maximizes P(piece comes from the puzzle) = P(piece | puzzle)

Introduction	Generative Image Models	Generative Language Models	Combining Modalities O	Conclusions O
Generati	ve Models			

- Generative models can be thought as sources that generate samples from a probability distribution
 - Jigsaw example: puzzles = sources, pieces = samples
- $\bullet~$ Limited number of sample types $\rightarrow~$ discrete distribution
- $\bullet~$ Unlimited sample types $\rightarrow~$ continuous distribution
- Samples are from observed variables; a number of hidden variables may affect them
- Model class *M* determines the model structure; parameters *θ* differentiate the models within a class

00000000	00000000	000000000	0	0		
Retrieval with Generative Models						

- A set of models of class \mathcal{M} with parameters $\boldsymbol{\theta}_1, \boldsymbol{\theta}_2, \dots, \boldsymbol{\theta}_N$
- An observation O is generated from one of the models
- Models can be ranked by sample likelihood $P(O | \boldsymbol{\theta}_i)$
- If observation is a set of samples {v₁, v₂,..., v_S} (e.g. words, visual features) and the models are memoryless:

$$P(O \mid \boldsymbol{\theta}_i) = \prod_{j=1}^{S} P(\boldsymbol{v}_j \mid \boldsymbol{\theta}_i)$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Introduction	Generative Image Models	Generative Language Models	Combining Modalities 0	Conclusions 0		
Estimating Model Parameters - ML						

- A set of training samples O from a model of class \mathcal{M}
- How to estimate parameters θ for the model?
- Maximum likelihood (ML) estimate
 - Select such $\boldsymbol{\theta}$ that the probability of the training data is maximized
 - Overlearning may be a problem

$$\hat{\boldsymbol{\theta}}_{\mathrm{ML}} = \arg \max_{\boldsymbol{\theta}} P(O \,|\, \boldsymbol{\theta}) \tag{1}$$

Introduction	Generative Image Models	Generative Language Models	Combining Modalities	Conclusions
0000000				

Estimating Model Parameters - MAP

- Maximum a posteriori (MAP) estimate
 - Select such $\boldsymbol{\theta}$ that the probability of the model given the training data is maximized
 - Model prior $P(\theta)$ is needed

$$\hat{\boldsymbol{\theta}}_{\text{MAP}} = \arg \max_{\boldsymbol{\theta}} P(\boldsymbol{\theta} \mid O) = \arg \max_{\boldsymbol{\theta}} P(\boldsymbol{\theta}) P(O \mid \boldsymbol{\theta}) \qquad (2)$$

Introduction 00000000	Generative Image Models	Generative Language Models	Combining Modalities 0	Conclusions 0
Outline				

- 2 Generative Image Models
 - Gaussian Mixture Model for Images
 - Parameter Estimation
 - Example
 - 3 Generative Language Models
 - Language Models for Text Retrieval
 - Parameter Estimation
 - Interpolation
- 4 Combining Multiple Modalities
- 5 Conclusions

Introduction	Generative Image Models	Generative Language Models	Combining Modalities	Conclusions
00000000	●0000000		O	0
Mixture	Models			

- Mixture model is a class of generative models
- We assume that samples *v* come from a mixture of *C* independent sources:

$$P(\boldsymbol{v}|\boldsymbol{\theta}) = \sum_{i=1}^{C} P(c_i|\boldsymbol{\theta}) P(\boldsymbol{v}|c_i, \boldsymbol{\theta})$$
(3)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 θ includes the prior probabilities P(c_i|θ) and parameters of the density functions P(v|c_i, θ) of the sources c_i

Sampling with a mixture model

Introduction	Generative Image Models	Generative Language Models	Combining Modalities	Conclusions	
00000000	○●○○○○○○		0	O	
Gaussian Mixture Models					

- If sources generate samples from normal distributions, we have a Gaussian Mixture Model (GMM)
- Normal distribution is useful approximation especially when the observed variable is affected by many independent variables (Central Limit theorem)
- Observed samples come from a set of different objects/categories \rightarrow GMM
 - Direct application: C categories really exist
 - Indirect application: just a tool for get a tractable model
 - By increasing the number of mixtures, we can go arbitrarily close to the any distribution

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Introduction 00000000	Generative Image Models	Generative Language Models	Combining Modalities 0	Conclusions O
GMM fo	or Images			

- Assume that a image are generated as follows:
 - Take a GMM with parameters $oldsymbol{ heta}=(oldsymbol{\pi},oldsymbol{\mu},oldsymbol{\Sigma})$
 - For each sample \boldsymbol{v} in the image
 - Pick a random component c_i according to the prior distribution $P(c_i|\boldsymbol{\theta}) = \pi_i$
 - Draw a random sample from c_i according to $N(\boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i)$
- Probability of a given sample is thus

$$P(\boldsymbol{v}|\boldsymbol{\theta}) = \sum_{i=1}^{C} P(c_i|\boldsymbol{\theta}) \times P(\boldsymbol{v}|c_i,\boldsymbol{\theta})$$

=
$$\sum_{i=1}^{C} \pi_i \times \frac{1}{\sqrt{(2\pi)^n |\boldsymbol{\Sigma}_i|}} \exp(-\frac{1}{2}(\boldsymbol{v}-\boldsymbol{\mu}_i)^T \boldsymbol{\Sigma}_i(\boldsymbol{v}-\boldsymbol{\mu}_i))$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ □ ● のへで

50000000			0	Ų
Introduction	Generative Image Models	Generative Language Models	Combining Modalities	Conclusions

- GMM parameters $oldsymbol{ heta} = (\pi, \mu, oldsymbol{\Sigma})$
 - Maximum likelihood estimation from a set of samples $O = \{v_1, v_2, \dots, v_S\}$:

$$\begin{aligned} \hat{\boldsymbol{\theta}}_{\mathrm{ML}} &= \arg \max_{\boldsymbol{\theta}} P(O \mid \boldsymbol{\theta}) \\ &= \arg \max_{\boldsymbol{\theta}} \prod_{j=1}^{S} P(\boldsymbol{v}_j \mid \boldsymbol{\theta}) \\ &= \arg \max_{\boldsymbol{\theta}} \prod_{j=1}^{S} \sum_{i=1}^{C} \pi_i |\boldsymbol{\Sigma}_i|^{-\frac{1}{2}} \exp(-\frac{1}{2}(\boldsymbol{v}_j - \boldsymbol{\mu}_i)^T \boldsymbol{\Sigma}_i (\boldsymbol{v}_j - \boldsymbol{\mu}_i)) \end{aligned}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduction	Generative Image Models	Generative Language Models	Combining Modalities	Conclusions
00000000	○○○○●○○○		0	O
EM Algo	orithm			

- No analytical solution for $oldsymbol{ heta}_{
 m ML}$
- Expectation-Maximization (EM) algorithm finds a local optimum iteratively
- A hidden variable **H** gives assignments of samples to components: $h_{ij} = P(c_i | v_j)$
- Initialize H randomly
- Iterate selecting ML estimates for parameters θ (M-step) and calculating new expectation values for H (E-step)

• Iterate until likelihood of the training data $P(O \mid \theta)$ stops increasing

Introduction	Generative Image Models	Generative Language Models	Combining Modalities	Conclusions
00000000	○○○○○●○○		0	O
EM Algo	orithm			

• E-step:

$$h_{ij} = \frac{p(\boldsymbol{v}_j | c_i) \pi_i}{\sum_{c=1}^{C} p(\boldsymbol{v}_j | c_c) \pi_c}$$
(4)

• M-step:

$$\boldsymbol{\mu}_{i} = \frac{\sum_{j} h_{ij} \boldsymbol{v}_{j}}{\sum_{j} h_{ij}}$$
(5)
$$\boldsymbol{\Sigma}_{i} = \frac{\sum_{j} h_{ij} (\boldsymbol{v}_{j} - \boldsymbol{\mu}_{i}) (\boldsymbol{v}_{j} - \boldsymbol{\mu}_{i})^{T}}{\sum_{j} h_{ij}}$$
(6)
$$\boldsymbol{\pi}_{i} = \frac{1}{S} \sum_{j} h_{ij}$$
(7)

Introduction	Generative Image Models	Generative Language Models	Combining Modalities	Conclusions
00000000	○○○○○●○		0	0
Example	e: GMM for a l	Single Image		

- $\bullet~256\times256$ grayscale image
- \bullet Samples: 8 \times 8 blocks uniformly from the image
- Features: (x, y) coordinates of the middle point, DCT transform of the pixel intensities

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Generative Image Models **Combining Modalities** 00000000

Example: GMM for a Single Image

<ロト <回ト < 注ト < 注ト 3 Introduction Generative Image Models Generative Language Models Combining Modalities Conclusions o

Example: GMM for a Single Image

 Introduction Generative Image Models Generative Language Models Combining Modalities Conclusions o

Example: GMM for a Single Image

▲□▶▲□▶▲≧▶▲≧▶ 差 のへぐ

roduction Generative Image Models Ge

Generative Language Models

Combining Modalities

Conclusions 0

Example: GMM for a Single Image

◆□ > ◆□ > ◆豆 > ◆豆 > ・豆 = のへ⊙

Generative Image Models Generative Language Models 0000000

Combining Modalities

Example: GMM for a Single Image

(日) (同) (日) (日) 3
 Introduction
 Generative Image Models
 Generative Language Models
 Combining Modalities
 Conclusions

 00000000
 00000000
 0
 0
 0
 0

Example: GMM for a Single Image

|▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ | 差|||の��

 Introduction
 Generative Image Models
 Generative Language Models
 Combining Modalities
 Conclusion

 0000000
 0000000
 0
 0
 0
 0
 0

Example: GMM for a Single Image

▲□▶ ▲□▶ ▲注▶ ▲注▶ 注目 のへで

Introduction Generative Image Models Generative Language Models Combining Modalities Conclusions o

Example: GMM for a Single Image

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ 二重 - のへで

Introduction Generative Image Models Generative Language Models Combining Modalities Conclusions

Example: GMM for a Single Image

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ 二重 - のへで

Introduction Generative Image Models Generative Language Models Combining Modalities Conclusions o

Example: GMM for a Single Image

◆□ > ◆□ > ◆豆 > ◆豆 > ・豆 = のへ⊙

Introduction	Generative Image Models	Generative Language Models	Combining Modalities	Conclusions
00000000	○○○○○○●		0	0
Evample	o: CNANA for a	Single Image		

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□ ◆ ⊙へ⊙

Introduction Generative Image Models Generative Language Models Combining Modalities Conclusions

Example: GMM for a Single Image

Introduction 00000000	Generative Image Models	Generative Language Models	Combining Modalities 0	Conclusions 0
Outline				

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- 2 Generative Image Models
 - Gaussian Mixture Model for Images
 - Parameter Estimation
 - Example

3 Generative Language Models

- Language Models for Text Retrieval
- Parameter Estimation
- Interpolation
- 4 Combining Multiple Modalities

5 Conclusions

Introduction	Generative Image Models	Generative Language Models	Combining Modalities	Conclusions
00000000		●00000000	0	0
Statistic	cal Language N	lodels		

- Statistical language model gives a probability distribution P(S) over texts strings S of a language
- Usually based on words: $P(w_1, w_2, \ldots, w_N)$
- N-gram assumption: $P(w_i | w_1, \dots, w_{i-2}, w_{i-1}) = P(w_i | w_{i-n+1}, \dots, w_{i-2}, w_{i-1})$
- n-gram model is a (n-1):th order Markov model
- High-order n-gram models are needed in speech recognition and statistical machine translation
- Unigram (1-gram) model seems to be enough for information retrieval

(日) (同) (三) (三) (三) (○) (○)

0000000	00000000	0000000	0	0
Unigram	Model for Tex	kt Retrieval		

- A lexicon of T words, α_i is the $i{:}{\rm th}$ word in lexicon
- Model parameters $\boldsymbol{\phi} = (\phi_1, \phi_2, \dots, \phi_T)$

•
$$P(w = \alpha_i | \boldsymbol{\phi}) = \phi_i$$

 Generation process: For each term of the document, draw a random term from φ according to multinomial distribution mult(φ)

Sampling with a unigram model

Introduction 00000000	Generative Image Models	Generative Language Models	Combining Modalities 0	Conclusions O
C I	1.11.11.1.1.6	ы		

Sample Likelihood for Unigram Model

- Sampled document is denoted as t = (t₁, t₂,..., t_T), where t_i is the number of occurrences of α_i
- Probability of t given the model ϕ is

$$P(t \mid \phi) = \frac{(\sum_{i=1}^{T} t_i)!}{\prod_{i=1}^{T} t_i!} \prod_{i=1}^{T} \phi_i^{t_i}$$
(8)

< ロ ト < 団 ト < 三 ト < 三 ト の へ ()</p>

- $\prod_{i=1}^{T} \phi_{i}^{t_{i}}$ gives the probability of words in one order
- The messy first term gives the number of permutations for the set of $N = \sum_{i=1}^{T} t_i$ words (bag-of-words model)

Introduction 00000000	Generative Image Models	Generative Language Models	Combining Modalities 0	Conclusions O

ML Estimate for Unigram Parameters

 $\hat{\phi}$

• Let's find the ML estimate for the parameters:

$$ML = \arg \max_{\phi} P(t \mid \phi)$$

$$= \arg \max_{\phi} \frac{(\sum_{i=1}^{T} t_i)!}{\prod_{i=1}^{T} t_i!} \prod_{i=1}^{T} \phi_i^{t_i}$$

$$= \arg \max_{\phi} \prod_{i=1}^{T} \phi_i^{t_i}$$

$$= \arg \min_{\phi} \left[-\sum_{i=1}^{T} t_i \log \phi_i \right]$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Unigram	Parameters			
Introduction 00000000	Generative Image Models	Generative Language Models	Combining Modalities 0	Conclusions 0

- $-\sum_{i=1}^{T} t_i \log \phi_i$ is (empirical) cross-entropy of the source that outputs words according to distribution ϕ
- Minimized with $\phi_i = \frac{t_i}{\sum_i t_i} = \frac{t_i}{N}$
- Thus ML estimates are just relative frequencies of words in the document

< ロ ト < 団 ト < 三 ト < 三 ト の へ ()</p>

Introduction	Generative Image Models	Generative Language Models	Combining Modalities	Conclusions		
00000000		○○○○●○○○	0	0		
Smoothing and Interpolation						

- However, the ML estimate has two fundamental problems
 - Words that did not occur in the document will have zero probabilities
 - Words that occurred only few times will have overestimated probabilities
- Traditional solutions:
 - Smoothing explicitly moves probability mass from the low frequencies to the zero frequencies (more or less heuristically)

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ◇ ◇ ◇

- Interpolation or back-off with/to more general (e.g. lower order) models
- Here we discuss only interpolation

Introduction	Gene	rative Image Mod	els Gen	erative Language N	o Combining Modal	lities Conclusions
00000000	000	00000	ooc	0000●00		O
1 A 4		1	1. A.			

Linear Interpolation with a Background Model

- $\bullet\,$ Make a background model $\phi_{\rm BG}$ using all the documents as training data
- Then interpolate linearly with a coefficient λ :

$$\phi_i = \lambda \phi_{i\rm ML} + (1 - \lambda)\phi_{i\rm BG} \tag{9}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- If $t_{d,i}$ is the number of times α_i occurred in document d, $\phi_{iBG} = \sum_d t_{d,i} / \sum_d \sum_j t_{d,j}$
- Or with document frequencies: $\phi_{iBG} = df_i / \sum_j df_j$

- ullet Let's try this in text retrieval for a query t
- With some of manipulation (see p. 192 in book), we get

$$P(\boldsymbol{t} \mid \boldsymbol{\phi}) \propto \prod_{t_i > 0} [rac{\lambda \phi_{i\mathrm{ML}}}{(1 - \lambda)\phi_{i\mathrm{BG}}} + 1]^{t_i}$$
 (10)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• Background probabilities $\phi_{\rm BG}$ weight down words that are common in the collection, as the idf component does in term weighting

Introduction	Generative Image Models	Generative Language Models	Combining Modalities	Conclusions
00000000		○○○○○○○●	O	O
Hierarch	ical Interpolati	on		

- Even more models can be combined with linear interpolation
- E.g. for a video subdivided into scenes which are subdivided into shots,

$$\phi_i = \lambda_{\text{Shot}} \phi_{i\text{Shot}} + \lambda_{\text{Scene}} \phi_{i\text{Scene}} + \lambda_{\text{Coll}} \phi_{i\text{Coll}} \qquad (11)$$

where $\lambda_{\mathrm{Shot}} + \lambda_{\mathrm{Scene}} + \lambda_{\mathrm{Coll}} = 1$

- λ :s can be estimated from a separate development set
- Interpolation can be used as well for generative image or video models

Introduction 00000000	Generative Image Models	Generative Language Models	Combining Modalities ©	Conclusions 0
Outline				

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ◇ ◇ ◇

- 2 Generative Image Models
 - Gaussian Mixture Model for Images
 - Parameter Estimation
 - Example
- 3 Generative Language Models
 - Language Models for Text Retrieval
 - Parameter Estimation
 - Interpolation

4 Combining Multiple Modalities

Conclusions

<u> </u>				Ŭ
Introduction	Generative Image Models	Generative Language Models	Combining Modalities	Conclusions

- Generative models for different modalities can naturally be combined
- E.g. multimedia query q = (v, t) with visual part v and textual part t
- Rank documents by joint probability $P(\boldsymbol{q} \,|\, d) = P(\boldsymbol{v}, \boldsymbol{t} \,|\, d)$
- Assuming that v and t are independent $P(q \mid d) = P(v \mid \theta_d)P(t \mid \phi_d)$
- The independence assumption is of course totally unrealistic

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• However, may work well enough in practice

Introduction 00000000	Generative Image Models	Generative Language Models	Combining Modalities 0	Conclusions O
Outline				

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ◇ ◇ ◇

- 2 Generative Image Models
 - Gaussian Mixture Model for Images
 - Parameter Estimation
 - Example
- 3 Generative Language Models
 - Language Models for Text Retrieval
 - Parameter Estimation
 - Interpolation
- 4 Combining Multiple Modalities

5 Conclusions

Introduction 00000000	Generative Image Models	Generative Language Models	Combining Modalities O	Conclusions •
Conclusi	ons			

- In IR, generative models describe the process of generating samples from documents
- Given the query, documents can be ranked with the sample likelihood of their models
- Two examples were given:
 - Gaussian Mixture Model for images
 - EM algorithm for training
 - Unigram model for text documents
 - Direct ML estimates, but smoothing/interpolation required

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・