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Introduction

Previously. . .

Basis expansion on the functions basis φk(t), k ∈ J1,KK for the functional
inputs xi (t), i ∈ J1,NK:

• xi (t) ≈
K∑

k=1

ckφk(t)

• Approximation:

• computation made easier
• dimension reduction

⇒ Determine the ck using a “correct” criterion
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Outline

1 Smoothing data by Least Squares

2 Constrain smoothing by roughness penalty

3 Constrained functions
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Smoothing data by Least Squares
Least Squares basis system
Number of Basis Functions

The setting. . .

Fit the observations yj , j ∈ J1, nK using model yi = x(tj) + εj with x(t)
defined by basis expansion

x(t) =
K∑
k

ckφk(t) = cTφ

Define by Φ the n × K matrix with values φk(tj)

Φ =


φ0(t1) φ1(t1) . . . φK (t1)
φ0(t2) φ1(t2) . . . φK (t2)

...
. . .

...
φ0(tn) φ1(tn) . . . φK (tn)
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Smoothing data by Least Squares
Least Squares basis system
Number of Basis Functions

Ordinary Least Squares fits

SMSSE Criterion

SMSSE(y|c) =
n∑

j=1

[
yj −

K∑
k

ckφk(t)

]2

= ||y −Φc||2

Minimizing SMSSE criterion

Leads to a vector of fitted values

ŷ = Φĉ = Φ(ΦTΦ)−1ΦTy

Appropriate for residuals iid, zero mean and constant variance
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Smoothing data by Least Squares
Least Squares basis system
Number of Basis Functions

Least Squares fits in real case

Nonstationary/autocorrelated errors → differential weighting of residuals:

SMSSE(y|c) = (y −Φc)TW(y −Φc)

W symmetric positive definite. Best case, variance-covariance matrix Σe

of residuals known, and W = Σ−1
e
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Smoothing data by Least Squares
Least Squares basis system
Number of Basis Functions

Least Squares fits in real case (2)

Estimate under for pubertal age. Boundaries get away → Needs
improvements there
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Smoothing data by Least Squares
Least Squares basis system
Number of Basis Functions

Choosing the number of Basis Functions K

Bias/Variance dilemma

• High K

• High order of expansion−→best fit to data

• Bias[x̂(t)] = x(t)− E [x̂(t)] is small

• Fit of noise or wrong variations

• Low K

• Miss of important aspects of estimated function

• Var[x̂(t)] = E
[
(x̂(t)− E (x̂(t))2

]
is small
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Smoothing data by Least Squares
Least Squares basis system
Number of Basis Functions

Choosing the number of Basis Functions K (2)

The Mean Square Error Criterion

MSE [x̂(t)] = E
[
(x̂(t)− x(t))2

]
or L2 loss function: express clearly a quantity to be minimized

In practice

Hardly possible to minimize because requires knowledge of x(t)

MSE [x̂(t)] = Bias2 [x̂(t)] + Var [x̂ ]

=⇒ Better tolerate some bias if we can have a sensible reduction of
variance
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Smoothing data by Least Squares
Least Squares basis system
Number of Basis Functions

Choosing the number of Basis Functions K (3)

Idea

• Have a good fit on the data: low residual sum of squares∑
[yj − x(tj)]

2

• But not too good to keep a low enough variance

• MSE: good way of expressing quality of estimate:

• Sacrifice some bias ⇒ lower variance

• How to lower MSE? Roughness penalty
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Constrain smoothing by roughness penalty
The Roughness
Updated fitting criterion
Choosing λ

Defining the roughness

Curvature is the squared second derivative
[
D2x(s)

]2
of function x(t)

PENm(x) =

∫
[Dmx(s)]2 ds

m-th order in PENm(x): when derivatives data are the interest:

• Considering acceleration from position data:

• Requires 2-nd order derivative for acceleration

• And 4-th order derivative for acceleration curvature
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Constrain smoothing by roughness penalty
The Roughness
Updated fitting criterion
Choosing λ

Updated fitting criterion

From SSE to

PENSSEλ(x |y) = [y − x(t)]T W [y − x(t)]2 + λPEN2(x)

λ smoothing parameter:

• λ small: fitted curve more variable (roughness penalty low)

• For λ → 0: curve close to perfect interpolation of data (high variance)

Smoothing spline: a solution to PENSSE criterion is a piece-wise cubic
spline with knots on the sample points.
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Constrain smoothing by roughness penalty
The Roughness
Updated fitting criterion
Choosing λ

Updated fitting criterion (2)

Previous expression of the data fitting vector ŷ

ŷ = Φ(ΦTWΦ)−1ΦTWy = Sφy

Now, with the new fitting criterion

ŷ = Φ(ΦTWΦ + λR)−1ΦTWy = Sφ,λy

with R =

∫
DmφDmφT

Form also useful to evaluate degrees of freedom of spline smooth
df(λ) = trace(Sφ,λ)
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Constrain smoothing by roughness penalty
The Roughness
Updated fitting criterion
Choosing λ

Updated fitting criterion (3)
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Constrain smoothing by roughness penalty
The Roughness
Updated fitting criterion
Choosing λ

Choosing the smoothing parameter λ

Practically, solution of the linear system involving

M(λ) = ΦTWΦ + λR

poses computational limits because of derivative order used.

Proposed rule of thumb

10||ΦTWΦ|| < ||λR|| < 1010||ΦTWΦ||
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Constrain smoothing by roughness penalty
The Roughness
Updated fitting criterion
Choosing λ

Cross-Validation and Generalized Cross-Validation

Cross-Validation is widely known: Take a subset of the whole data and
make it the validation set. The rest is for the actual training: the training
set.

Problems

• Can be computationally intensive (Leave-One-Out)

• Minimizing CV may under-smooth the data: may favor fitting noise or
high freq (to be ignored for smoothing)
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Constrain smoothing by roughness penalty
The Roughness
Updated fitting criterion
Choosing λ

Cross-Validation and Generalized Cross-Validation

Introduction of the Generalized cross-validation criterion (GCV)

GCV(λ) =
n−1SSE

[n−1trace(I− SΦ,λ)]2
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Constrain smoothing by roughness penalty
The Roughness
Updated fitting criterion
Choosing λ

Cross-Validation and Generalized Cross-Validation

Minimization of GCV criterion

Find λ by grid-search or numerical optimization algorithm on

GCV(λ) =
ntrace(YT [I− SΦ,λ]−2Y)

(trace[I − SΦ,λ])2

with Y the n×N data matrix, Φ the n×K matrix of basis functions values

This can be made “easy” by some tricks to invert the M(λ) matrix.
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Constrain smoothing by roughness penalty
The Roughness
Updated fitting criterion
Choosing λ

Cross-Validation and Generalized Cross-Validation

The book presents an application of all this to a bi-resolution analysis:
Two sets of basis functions.

Well detailled and interesting to see things in “action”

Yoan Miche (CIS, HUT) Smoothing functional data with constraints February 6, 2007 19 / 24



Constrained functions
What for?
Positive Functions
Monotone Functions

Why constrained functions?

Up to now:

• Smooth functions “constrained” with penalty

• Only thing required was: smoothness

What about constraints?

Need for being positive, monotone, represent a pdf or such: How to
manage?
Book details four cases, we go through 2
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Constrained functions
What for?
Positive Functions
Monotone Functions

1. Fitting positive functions

Can be defined by an exponential (base does not matter)

x(t) = eW (t)

with W (t) an unconstrained function, that can thus be expanded to basis
functions by

W (t) =
∑
k

ckφk(t)
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Constrained functions
What for?
Positive Functions
Monotone Functions

1. Fitting positive functions (2)

Not forgetting the roughness: defined as roughness of its logarithm, W (t):

PENSSEλ(W |y) =
(
y − eW (t)

)T
W

(
y − eW (t)

)2
+ λ

∫
[D2W (t)]2dt

Minimization of PENSSE criterion has now to be done numerically, by
iterative decreases of initial estimate of W (t)

Convergence is fast even with values for W (t) that differ greatly from final
value.
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Constrained functions
What for?
Positive Functions
Monotone Functions

2. Fitting monotone functions (quickly)

Again, express the condition by

Dx(t) = eW (t)

thus

x(t) = C +

∫ t

t0

eW (u)du

and same ideas then. . .

Rest is skipped, please refer to the book for details
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Conclusions

Conclusions

Some parts skipped in this presentation:

• Performance assessment;

• Confidence intervals estimation (functional probes,. . . );

• Localized least squares (kernel smoothing);

• Other things I forgot. . . =)

Some a bit heavy in math. sense, some not detailled in the book but may
seem useful anyway.

You can look at confidence intervals estimation parts (4.6, 5.5).
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