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n. 7: The registration and display of functional data
n. 8: Principal components analysis for functional data

n. 9: Regularized principal components analysis




Ch. 7: Introduction

» two types of variability: amplitude and phase

» physical time not always meaningful
s €.g. human growth curve

» curves may have the same shape but different time scale =
direct comparison not possible

» time scale has to be transformed to register (align) the curves

» Mmethods for registration
s Shift registration
» feature or landmark registration
s continuous registration
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‘Shift registration

» simply move curves horizontally so that they are aligned
o (1) = a3 (t + 0;)

» nuisance effects: J; have no real interest

» random effects: ¢, are an important feature of each curve

» let T be the time interval [T}, T3] where the curves are to be
registered and /i(¢) the estimated mean

» least squares criterion to find ¢;
o REGSSE =37, [ [xi(t + &) — a(t)]?ds (7.1)
s minimized with the Newton-Raphson algorithm

» Procrustes method: iteratively update in turns (1) mean /i(t)
and (2) shifts ¢,
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Feature or landmark registration (1/2)

o feature / landmark: some characteristic that one can
associate with specific argument value ¢

s Minima, maxima or zero crossings of the curve or its
derivative etc.

» the goal is to construct a time warping function h; for each
curve so that the landmarks in the registered curves coincide

s registered curves: z}(t) = x;|h;(t)]
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Featureor landmark registration (2/2)

» the corresponding landmarks in each curve must be identified

» lett;; be the argument values for each curve z; and each
landmark f =1,... F

» 1o are the target timings I.e. landmarks in the mean function

» define h;(t) for each curve so that
s h(Ty) =T, and h(Ty) =T,
s hi(toy) =ty forall f
s h; Is strictly monotonic
» the values between the landmarks are linearly interpolated
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» linear interpolation for estimating A has limitations
s no higher order derivatives
s continuous registration not possible

o model time as a growth process (Section 6.3)
o h(t) = Cy+ Cy [y exp[W (u)]du (7.2)
W(u) =0 = h(t) = t: physical time

e W(u) < 0= h(t) <t:“running ahead”
W(u) > 0= h(t) > t: “running late”




‘Continuousregistration (1/2)

» least squares criterion used for shift registration can not be
used for general warping functions

s tends to squeeze out regions where amplitude differs

o a criterion based on PCA can be defined

» plotting the target curve z((t) and correctly registered
curve z|h(t)] against each other should form a line

s = only one positive eigenvalue
» let X be a n by two matrix of sampled values (xzy(t), z|h(t)])
» functional analogue of X’X:

[{ao(®)Y2dt [ wolt)zln(t)dt 73)

- T = - [ao()zlh()dt [{xolh(t)]}2dt
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. Continuousregistration (2/2)

» the fitting criterion:
s M NEI Gh) = us|T(h)] (7.4)
. i.e. the second eigenvalue of T(h)

s when M NEI G h) = 0, we have achieved registration and A is
the warping function that does the job

» applying (7.2) and imposing smoothness regularization:
» M NEI G,(h) =M NEl Gh) + X [{W™)(¢)}2dt (7.5)
» e.g. expand IV in terms of B-splines
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# preprocessing: centering, rescaling

» zero crossings are good landmarks

s register the derivate of the curve rather than the curve
itself

» Dbefore continuous registration it is wise to register based on
some clearly identifiable landmarks




» user wants to find features characterizing the functions

# Vvariance-covariance and correlation functions difficult to
Interpret

» = principal components analysis (PCA)




PCA for multivariate data

» linear combination f; = > ', Bjry,i=1,...,N

s invectorform: f; = f'x;,e =1,..., N, where 3 is the weight
vector (54, ...,[3,) and xz; is the vector (z;1,..., %)

» PCA: find weight vectors that maximize variation in the f;’s

1. find & = (&4, ..., &) so that
. mean square N~'> . f2 is largest possible
s here f;; = & x;
. constraint: |||]* =1
2. ... m. calculate second to mth weight vectors &, ..., &,

. additional constraints: £.£,, =0,k <m
s l.e. new weight vectors are orthogonal to the previous
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» discrete index j in x;; Is replaced by continuous index s In
zi(s)

» instead of inner product §'z; = » . 8x; use
[ Bz = [ B(s)z(s)ds

» weights become functions j3(s)

s again, maximize N~'>". f3 = N7 >".([ &a;)? with constraint
[&1]]* = [ &als)ds =1

» orthogonality constraint becomes: [ &:&, =0,k <m




'PCA and eigenvalues

» let V be the sample covariance matrix V = N~1X'X

» PCA for multivariate data can be performed by solving the
eigenvector problem: V¢ = p¢

» for functional PCA, define the covariance function:
s u(s,t) = N7ESOY a(s)a(t) (8.8)
» the PCA weight functions ¢;(s) satisfy:
. [uls.E)dt = pe(s)  (8.9)
» define covariance operator V' by:
o VE= [u(-t)&E(t)dt (8.10)
» functional PCA gets now the familiar form of:
s VE=p& (8.11)
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Visualizing theresults

» plotting the eigenfunctions £(s)

» plotting the mean and the functions obtained by adding and
substracting a suitable multiple of the principal component
function in question

» plotting principal component scores
» rotating principal components, e.g. VARIMAX rotation
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‘Computational methodsfor functional PCA (1

» all methods involve converting the continuous functional
eigenanalysis problem to an approximately equivalent matrix
eigenanalysis task

1. discretize the functions
» take N x n data matrix X of finely sampled values of z;
» solve the eigenvalue problem for V.= N71X'X

» to obtain an approximate eigenfunction £(s) from the discrete
values, we can use any convenient interpolation method
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Computational methods for functional PCA (-

2. basis function expansion of the functions

» express each x; as a linear combination of basis functions:
o ai(t) = Yy cind(t)
s Invector form: x = Co¢

s define K x K matrix W = [ ¢¢/

» suppose the eigenfunction ¢ has expansion:
s &(s) = 2 budk(s) = ¢(s)'b

o now [u(s,t)E(t)dt = [ N71o(s)C'Co(t)p(t)'bdt =
o(s)) N"1C'CWb

» the eigenequation is purely matrix:
» N"'W2C'CW'2u = pu

» eigenfunctions from b = W~1/2qu

T-61.6030 Introductory Elements of Functional Data Analysis:Ramsay: Chapters 7,8,9 — p.17/24




Bivariate and multivariate PCA

» Simultaneous variation of more than one function

» both measured relative to the same function (e.g. time)

» both measure quantities in the same units (e.g. degrees or
cm)

1. concatenate vectors into a single long bector Z;

2. carry out PCA as in univariate case

3. separate the resulting components

» Visualizing: e.g. plot one variable against the other
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» smoothing applied to PCA
» based on roughness penalty as in Chapter 5




» roughness penalty:

> PEN;(¢) = || D=¢][7
» unsmoothed PCA maximizes sample variance var [ {z;
» penalized sample variance:

varl [e¢x;
+ PCAPSVS) = TarPEN® (9-1)

» smoothing parameter A > 0 chosen with cross-validation

# constraints:

. ||§j||2=1
o [&(8)Ek(s)ds + [ D*€¢;(s)D*¢(s)ds =0fork=1,...,5—1




. Finding regularized PCA In practice (1/2)

» In practice, smoothed principal components are found by
working in terms of a suitable basis

1. the periodic case
» Fourier basis {¢,}: {1, sin(wt), cos(wt), sin(2wt), cos(2wt)...}
s define wy;_1 = wy; = 27
» the expansion: x(s) =) c,¢.(s) = c'¢(s)
» roughness penalty becomes: ||D?z||? = > wic?
o let V be the covariance matrix of the coefficient vectors c;
» let S be a diagonal matrix with entries S, = (1 4 \w?)~1/2
» Yy Is the vector of Fourier coefficients for &
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‘Finding regularized PCA in practice (2/2)

» penalized sample variance becomes:

. PCAPSV(¢) = - (9.6)
» eigenproblem is again purely matrix:

s Vy = pS~?%y (9.7)

. or: (SVS)(S™'y) = p(S7ty) (9.8)
o SVS is the covariance matrix of Sc;

o I.e. normal PCA on the smoothed coefficients Sc;

2. nonperiodic case
» e.g. B-splines are used instead of Fourier basis

» with similar (but bit more complicated) steps PCAPSV and the
corresponding matrix eigeneguation problem can be found

T-61.6030 Introductory Elements of Functional Data Analysis:Ramsay: Chapters 7,8,9 — p.22/24




» smooth the data first, then carry out an unsmoothed PCA

» stepwise roughness penalty procedure: different A\, for each
principal component




Conclusions

» skipped in this presentation
s lots of mathematical details
s Some nice examples and figures
s 7.9 Computational details
s detalls of 8.3 Visualizing the results
s 8.4.3 More general numerical quadrature
s detalls of 8.5 Bivariate and multivariate PCA
s 9.3.3 Choosing the smoothing parameter by CV
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