T-61.6030 Introductory Elements of Functional Data Analysis: Ramsay: Chapters 7,8,9

Ville Turunen

ville.t.turunen@tkk.fi

T-61.6030 Introductory Elements of Functional Data Analysis:Ramsay: Chapters 7,8,9 - p.1/24

Outline

- Ch. 7: The registration and display of functional data
- Ch. 8: Principal components analysis for functional data
- Ch. 9: Regularized principal components analysis

- two types of variability: amplitude and phase
- physical time not always meaningful
 - e.g. human growth curve
- curves may have the same shape but different time scale \Rightarrow direct comparison not possible
- time scale has to be transformed to register (align) the curves
- methods for registration
 - shift registration
 - feature or landmark registration
 - continuous registration

Shift registration

simply move curves horizontally so that they are aligned

• $x_i^*(t) = x_i(t + \delta_i)$

- nuisance effects: δ_i have no real interest
- random effects: δ_i are an important feature of each curve
- let τ be the time interval $[T_1, T_2]$ where the curves are to be registered and $\hat{\mu}(t)$ the estimated mean
- least squares criterion to find δ_i
 - REGSSE = $\sum_{i=1}^{N} \int_{\tau} [x_i(t+\delta_i) \hat{\mu}(t)]^2 ds$ (7.1)
 - minimized with the Newton-Raphson algorithm
- Procrustes method: iteratively update in turns (1) mean $\hat{\mu}(t)$ and (2) shifts δ_i

Feature or landmark registration (1/2)

- feature / landmark: some characteristic that one can associate with specific argument value t
 - minima, maxima or zero crossings of the curve or its derivative etc.
- the goal is to construct a *time warping function* h_i for each curve so that the landmarks in the registered curves coincide
- registered curves: $x_i^*(t) = x_i[h_i(t)]$

Feature or landmark registration (2/2)

- the corresponding landmarks in each curve must be identified
- let t_{if} be the argument values for each curve x_i and each landmark $f = 1, \ldots, F$
- t_{0f} are the target timings i.e. landmarks in the mean function
- define $h_i(t)$ for each curve so that
 - $h(T_1) = T_1 \text{ and } h(T_2) = T_2$
 - $h_i(t_{0f}) = t_{if}$ for all f
 - h_i is strictly monotonic
- the values between the landmarks are linearly interpolated

A more general warping function *h*

- Inear interpolation for estimating h has limitations
 - no higher order derivatives
 - continuous registration not possible
- model time as a growth process (Section 6.3)

•
$$h(t) = C_0 + C_1 \int_0^t exp[W(u)]du$$
 (7.2)

- $W(u) = 0 \Rightarrow h(t) = t$: physical time
- $W(u) < 0 \Rightarrow h(t) < t$: "running ahead"
- $W(u) > 0 \Rightarrow h(t) > t$: "running late"

Continuous registration (1/2)

- least squares criterion used for shift registration can not be used for general warping functions
 - tends to squeeze out regions where amplitude differs
- a criterion based on PCA can be defined
 - plotting the target curve $x_0(t)$ and correctly registered curve x[h(t)] against each other should form a line
 - $\bullet \Rightarrow$ only one positive eigenvalue
- let X be a *n* by two matrix of sampled values $(x_0(t), x[h(t)])$
- functional analogue of X'X:

•
$$\mathbf{T}(h) = \begin{bmatrix} \int \{x_0(t)\}^2 dt & \int x_0(t)x[h(t)]dt \\ \int x_0(t)x[h(t)]dt & \int \{x_0[h(t)]\}^2 dt \end{bmatrix}$$

(7.3)

Continuous registration (2/2)

- the fitting criterion:
 - MINEIG $(h) = \mu_2[\mathbf{T}(h)]$ (7.4)
 - i.e. the second eigenvalue of $\mathbf{T}(h)$
- when MINEIG(h) = 0, we have achieved registration and h is the warping function that does the job
- applying (7.2) and imposing smoothness regularization:

• MINEIG_{λ} $(h) = MINEIG(h) + \lambda \int \{W^{(m)}(t)\}^2 dt$ (7.5)

• e.g. expand W in terms of B-splines

Some practical issues

- preprocessing: centering, rescaling
- zero crossings are good landmarks
 - register the derivate of the curve rather than the curve itself
- before continuous registration it is wise to register based on some clearly identifiable landmarks

Ch.8: PCA for functional data: Introduction

- user wants to find features characterizing the functions
- variance-covariance and correlation functions difficult to interpret
- \Rightarrow principal components analysis (PCA)

PCA for multivariate data

- linear combination $f_i = \sum_{j=1}^p \beta_j x_{ij}, i = 1, \dots, N$
- in vector form: $f_i = \beta' x_i, i = 1, ..., N$, where β' is the weight vector $(\beta_1, ..., \beta_p)'$ and x_1 is the vector $(x_{i1}, ..., x_{ip})'$
- PCA: find weight vectors that maximize variation in the f_i 's
 - 1. find $\xi_1 = (\xi_{11}, ..., \xi_{1i})'$ so that
 - mean square $N^{-1}\sum_i f_{i1}^2$ is largest possible
 - here $f_{i1} = \xi'_1 x_i$
 - constraint: $||\xi_1||^2 = 1$
 - 2. ... m. calculate second to *m*th weight vectors ξ_2, \ldots, ξ_m
 - additional constraints: $\xi'_k \xi_m = 0, k < m$
 - i.e. new weight vectors are orthogonal to the previous

PCA for functional data

- discrete index j in x_{ij} is replaced by continuous index s in $x_i(s)$
- instead of inner product $\beta' x_i = \sum_j \beta_j x_j$ use $\int \beta x = \int \beta(s) x(s) ds$
- weights become functions $\beta(s)$
- again, maximize $N^{-1}\sum_i f_{i1}^2 = N^{-1}\sum_i (\int \xi_1 x_i)^2$ with constraint $||\xi_1||^2 = \int \xi_1(s)^2 ds = 1$
- orthogonality constraint becomes: $\int \xi_k \xi_m = 0, k < m$

PCA and eigenvalues

- let V be the sample covariance matrix $V = N^{-1}X'X$
- PCA for multivariate data can be performed by solving the eigenvector problem: $\mathbf{V}\xi = \rho\xi$
- for functional PCA, define the covariance function:

•
$$v(s,t) = N^{-1} \sum_{i=1}^{N} x_i(s) x_i(t)$$
 (8.8)

• the PCA weight functions $\xi_j(s)$ satisfy:

•
$$\int v(s,t)\xi(t)dt = \rho\xi(s)$$
 (8.9)

• define *covariance operator* V by:

•
$$V\xi = \int v(\cdot, t)\xi(t)dt$$
 (8.10)

functional PCA gets now the familiar form of:

•
$$V\xi = \rho\xi$$
 (8.11)

Visualizing the results

- plotting the eigenfunctions $\xi(s)$
- plotting the mean and the functions obtained by adding and substracting a suitable multiple of the principal component function in question
- plotting principal component scores
- rotating principal components, e.g. VARIMAX rotation

Computational methods for functional PCA (1

- all methods involve converting the continuous functional eigenanalysis problem to an approximately equivalent matrix eigenanalysis task
- 1. discretize the functions
 - take $N \times n$ data matrix **X** of finely sampled values of x_i
 - solve the eigenvalue problem for $\mathbf{V} = N^{-1} \mathbf{X}' \mathbf{X}$
 - to obtain an approximate eigenfunction $\xi(s)$ from the discrete values, we can use any convenient interpolation method

Computational methods for functional PCA (2

- 2. basis function expansion of the functions
 - express each x_i as a linear combination of basis functions:
 - $x_i(t) = \sum_{k=1}^{K} c_{ik} \phi_k(t)$
 - , in vector form: $\mathbf{x}=\mathbf{C}\phi$
 - define $K \times K$ matrix $\mathbf{W} = \int \phi \phi'$
 - suppose the eigenfunction ξ has expansion:

•
$$\xi(s) = \sum_{k=1}^{K} b_k \phi_k(s) = \phi(s)' \mathbf{b}$$

- now $\int v(s,t)\xi(t)dt = \int N^{-1}\phi(s)'\mathbf{C}'\mathbf{C}\phi(t)\phi(t)'\mathbf{b}dt = \phi(s)'N^{-1}\mathbf{C}'\mathbf{CWb}$
- the eigenequation is purely matrix:
 - $N^{-1}\mathbf{W}^{1/2}\mathbf{C'CW}^{1/2}\mathbf{u} = \rho\mathbf{u}$
- ${\scriptstyle { \bullet } }$ eigenfunctions from ${\bf b} = {\bf W}^{-1/2} {\bf u}$

Bivariate and multivariate PCA

- simultaneous variation of more than one function
- both measured relative to the same function (e.g. time)
- both measure quantities in the same units (e.g. degrees or cm)
- 1. concatenate vectors into a single long bector Z_i
- 2. carry out PCA as in univariate case
- 3. separate the resulting components
- visualizing: e.g. plot one variable against the other

Ch.9: Regularized PCA: Introduction

- smoothing applied to PCA
- based on roughness penalty as in Chapter 5

Smoothing approach

- roughness penalty:
 - $ext{PEN}_2(\xi) = ||D^2\xi||^2$
- unsmoothed PCA maximizes sample variance $var \int \xi x_i$
- penalized sample variance:
 - $\operatorname{PCAPSV}(\xi) = \frac{\operatorname{var} \int \xi x_i}{||\xi||^2 + \lambda \operatorname{PEN}_2(\xi)}$ (9.1)
- smoothing parameter $\lambda \ge 0$ chosen with cross-validation
- constraints:
 - $||\xi_j||^2 = 1$
 - $\int \xi_j(s)\xi_k(s)ds + \int D^2\xi_j(s)D^2\xi_k(s)ds = 0$ for k = 1, ..., j 1

Finding regularized PCA in practice (1/2)

- in practice, smoothed principal components are found by working in terms of a suitable basis
- 1. the periodic case
 - Fourier basis $\{\phi_{\nu}\}$: $\{1, sin(\omega t), cos(\omega t), sin(2\omega t), cos(2\omega t)...\}$

• define
$$\omega_{2j-1} = \omega_{2j} = 2\pi j$$

- the expansion: $x(s) = \sum_{\nu} c_{\nu} \phi_{\nu}(s) = \mathbf{c}' \phi(s)$
- roughness penalty becomes: $||D^2x||^2 = \sum_{\nu} \omega_{\nu}^4 c_{\nu}^2$
- ${\scriptstyle {\bullet}} {}$ let ${\bf V}$ be the covariance matrix of the coefficient vectors ${\bf c_i}$
- let S be a diagonal matrix with entries $S_{\nu\nu} = (1 + \lambda \omega_{\nu}^4)^{-1/2}$
- y is the vector of Fourier coefficients for ξ

Finding regularized PCA in practice (2/2)

- penalized sample variance becomes:
 - PCAPSV $(\xi) = \frac{\mathbf{y}' \mathbf{V} \mathbf{y}}{\mathbf{y}' \mathbf{S}^{-2} \mathbf{y}}$ (9.6)
- eigenproblem is again purely matrix:
 - $Vy = \rho S^{-2}y$ (9.7)
 - or: $(SVS)(S^{-1}y) = \rho(S^{-1}y)$ (9.8)
- ${\scriptstyle { \bullet } } \ {\rm SVS}$ is the covariance matrix of ${\rm Sc}_{i}$
- i.e. normal PCA on the smoothed coefficients $\mathbf{Sc_i}$
- 2. nonperiodic case
 - e.g. B-splines are used instead of Fourier basis
 - with similar (but bit more complicated) steps PCAPSV and the corresponding matrix eigenequation problem can be found

Alternative approaches

- smooth the data first, then carry out an unsmoothed PCA
- stepwise roughness penalty procedure: different λ_j for each principal component

Conclusions

- skipped in this presentation
 - lots of mathematical details
 - some nice examples and figures
 - 7.9 Computational details
 - details of 8.3 Visualizing the results
 - 8.4.3 More general numerical quadrature
 - details of 8.5 Bivariate and multivariate PCA
 - 9.3.3 Choosing the smoothing parameter by CV