
T-61.6030 Introductory Elements of
Functional Data Analysis:
Ramsay: Chapters 7,8,9

Ville Turunen

ville.t.turunen@tkk.fi

T-61.6030 Introductory Elements of Functional Data Analysis:Ramsay: Chapters 7,8,9 – p.1/24



Outline

Ch. 7: The registration and display of functional data

Ch. 8: Principal components analysis for functional data

Ch. 9: Regularized principal components analysis
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Ch. 7: Introduction

two types of variability: amplitude and phase

physical time not always meaningful
e.g. human growth curve

curves may have the same shape but different time scale ⇒
direct comparison not possible

time scale has to be transformed to register (align) the curves

methods for registration
shift registration
feature or landmark registration
continuous registration
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Shift registration

simply move curves horizontally so that they are aligned
x∗

i (t) = xi(t + δi)

nuisance effects: δi have no real interest

random effects: δi are an important feature of each curve

let τ be the time interval [T1, T2] where the curves are to be
registered and µ̂(t) the estimated mean

least squares criterion to find δi

REGSSE =
∑N

i=1

∫

τ
[xi(t + δi) − µ̂(t)]2ds (7.1)

minimized with the Newton-Raphson algorithm

Procrustes method : iteratively update in turns (1) mean µ̂(t)
and (2) shifts δi
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Feature or landmark registration (1/2)

feature / landmark : some characteristic that one can
associate with specific argument value t

minima, maxima or zero crossings of the curve or its
derivative etc.

the goal is to construct a time warping function hi for each
curve so that the landmarks in the registered curves coincide

registered curves: x∗
i (t) = xi[hi(t)]
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Feature or landmark registration (2/2)

the corresponding landmarks in each curve must be identified

let tif be the argument values for each curve xi and each
landmark f = 1, . . . , F

t0f are the target timings i.e. landmarks in the mean function

define hi(t) for each curve so that
h(T1) = T1 and h(T2) = T2

hi(t0f ) = tif for all f

hi is strictly monotonic

the values between the landmarks are linearly interpolated
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A more general warping function h

linear interpolation for estimating h has limitations
no higher order derivatives
continuous registration not possible

model time as a growth process (Section 6.3)

h(t) = C0 + C1

∫ t

0
exp[W (u)]du (7.2)

W (u) = 0 ⇒ h(t) = t: physical time

W (u) < 0 ⇒ h(t) < t: “running ahead”

W (u) > 0 ⇒ h(t) > t: “running late”
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Continuous registration (1/2)

least squares criterion used for shift registration can not be
used for general warping functions

tends to squeeze out regions where amplitude differs

a criterion based on PCA can be defined
plotting the target curve x0(t) and correctly registered
curve x[h(t)] against each other should form a line
⇒ only one positive eigenvalue

let X be a n by two matrix of sampled values (x0(t), x[h(t)])

functional analogue of X′X:

T(h) =

[

∫

{x0(t)}
2dt

∫

x0(t)x[h(t)]dt
∫

x0(t)x[h(t)]dt
∫

{x0[h(t)]}2dt

]

(7.3)
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Continuous registration (2/2)

the fitting criterion:
MINEIG(h) = µ2[T(h)] (7.4)
i.e. the second eigenvalue of T(h)

when MINEIG(h) = 0, we have achieved registration and h is
the warping function that does the job

applying (7.2) and imposing smoothness regularization:

MINEIGλ(h) = MINEIG(h) + λ
∫

{W (m)(t)}2dt (7.5)

e.g. expand W in terms of B-splines
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Some practical issues

preprocessing: centering, rescaling

zero crossings are good landmarks
register the derivate of the curve rather than the curve
itself

before continuous registration it is wise to register based on
some clearly identifiable landmarks
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Ch.8: PCA for functional data: Introduction

user wants to find features characterizing the functions

variance-covariance and correlation functions difficult to
interpret

⇒ principal components analysis (PCA)
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PCA for multivariate data

linear combination fi =
∑p

j=1 βjxij, i = 1, . . . , N

in vector form: fi = β′xi, i = 1, . . . , N , where β′ is the weight
vector (β1, . . . , βp)

′ and x1 is the vector (xi1, . . . , xip)
′

PCA: find weight vectors that maximize variation in the fi’s
1. find ξ1 = (ξ11, . . . , ξ1i)

′ so that
mean square N−1

∑

i f
2
i1 is largest possible

here fi1 = ξ′1xi

constraint: ||ξ1||
2 = 1

2. ... m. calculate second to mth weight vectors ξ2, . . . , ξm

additional constraints: ξ′kξm = 0, k < m

i.e. new weight vectors are orthogonal to the previous
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PCA for functional data

discrete index j in xij is replaced by continuous index s in
xi(s)

instead of inner product β′xi =
∑

j βjxj use
∫

βx =
∫

β(s)x(s)ds

weights become functions β(s)

again, maximize N−1
∑

i f
2
i1 = N−1

∑

i(
∫

ξ1xi)
2 with constraint

||ξ1||
2 =

∫

ξ1(s)
2ds = 1

orthogonality constraint becomes:
∫

ξkξm = 0, k < m
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PCA and eigenvalues

let V be the sample covariance matrix V = N−1X′X

PCA for multivariate data can be performed by solving the
eigenvector problem: Vξ = ρξ

for functional PCA, define the covariance function:

v(s, t) = N−1
∑N

i=1 xi(s)xi(t) (8.8)

the PCA weight functions ξj(s) satisfy:
∫

v(s, t)ξ(t)dt = ρξ(s) (8.9)

define covariance operator V by:
V ξ =

∫

v(·, t)ξ(t)dt (8.10)

functional PCA gets now the familiar form of:
V ξ = ρξ (8.11)
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Visualizing the results

plotting the eigenfunctions ξ(s)

plotting the mean and the functions obtained by adding and
substracting a suitable multiple of the principal component
function in question

plotting principal component scores

rotating principal components, e.g. VARIMAX rotation
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Computational methods for functional PCA (1/2)

all methods involve converting the continuous functional
eigenanalysis problem to an approximately equivalent matrix
eigenanalysis task

1. discretize the functions

take N × n data matrix X of finely sampled values of xi

solve the eigenvalue problem for V = N−1X′X

to obtain an approximate eigenfunction ξ(s) from the discrete
values, we can use any convenient interpolation method
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Computational methods for functional PCA (2/2)

2. basis function expansion of the functions

express each xi as a linear combination of basis functions:

xi(t) =
∑K

k=1 cikφk(t)

in vector form: x = Cφ

define K × K matrix W =
∫

φφ′

suppose the eigenfunction ξ has expansion:

ξ(s) =
∑K

k=1 bkφk(s) = φ(s)′b

now
∫

v(s, t)ξ(t)dt =
∫

N−1φ(s)′C′Cφ(t)φ(t)′bdt =

φ(s)′N−1C′CWb

the eigenequation is purely matrix:

N−1W1/2C′CW1/2u = ρu

eigenfunctions from b = W−1/2u
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Bivariate and multivariate PCA

simultaneous variation of more than one function

both measured relative to the same function (e.g. time)

both measure quantities in the same units (e.g. degrees or
cm)

1. concatenate vectors into a single long bector Zi

2. carry out PCA as in univariate case

3. separate the resulting components

visualizing: e.g. plot one variable against the other
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Ch.9: Regularized PCA: Introduction

smoothing applied to PCA

based on roughness penalty as in Chapter 5
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Smoothing approach

roughness penalty:
PEN2(ξ) = ||D2ξ||2

unsmoothed PCA maximizes sample variance var
∫

ξxi

penalized sample variance:

PCAPSV(ξ) =
var

R

ξxi

||ξ||2+λPEN2(ξ)
(9.1)

smoothing parameter λ ≥ 0 chosen with cross-validation

constraints:
||ξj ||

2 = 1
∫

ξj(s)ξk(s)ds +
∫

D2ξj(s)D
2ξk(s)ds = 0 for k = 1, . . . , j − 1
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Finding regularized PCA in practice (1/2)

in practice, smoothed principal components are found by
working in terms of a suitable basis

1. the periodic case

Fourier basis {φν}: {1, sin(ωt), cos(ωt), sin(2ωt), cos(2ωt)...}

define ω2j−1 = ω2j = 2πj

the expansion: x(s) =
∑

ν cνφν(s) = c′φ(s)

roughness penalty becomes: ||D2x||2 =
∑

ν ω4
νc

2
ν

let V be the covariance matrix of the coefficient vectors ci

let S be a diagonal matrix with entries Sνν = (1 + λω4
ν)

−1/2

y is the vector of Fourier coefficients for ξ
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Finding regularized PCA in practice (2/2)

penalized sample variance becomes:

PCAPSV(ξ) = y′Vy

y′S−2y
(9.6)

eigenproblem is again purely matrix:
Vy = ρS−2y (9.7)
or: (SVS)(S−1y) = ρ(S−1y) (9.8)

SVS is the covariance matrix of Sci

i.e. normal PCA on the smoothed coefficients Sci

2. nonperiodic case

e.g. B-splines are used instead of Fourier basis

with similar (but bit more complicated) steps PCAPSV and the
corresponding matrix eigenequation problem can be found
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Alternative approaches

smooth the data first, then carry out an unsmoothed PCA

stepwise roughness penalty procedure: different λj for each
principal component
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Conclusions

skipped in this presentation
lots of mathematical details
some nice examples and figures
7.9 Computational details
details of 8.3 Visualizing the results
8.4.3 More general numerical quadrature
details of 8.5 Bivariate and multivariate PCA
9.3.3 Choosing the smoothing parameter by CV
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