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Elia Liitiäinen (eliitiai@cc.hut.fi)

Time Series Prediction Group
Adaptive Informatics Research Centre

Helsinki University of Technology, Finland

March 27, 2007

AB



AB

Introduction

The functional context allows various non-classical tools.

The infinite dimension of the data poses a challenge for
nonparametric methods.

In this presentation basic concepts for understanding
functional data are introduced.

2 / 15



AB

Outline

1 Semimetrics

2 Curse of Dimensionality

3 Case Study

4 Kernels

3 / 15



AB

Finite-dimensional space

In the finite-dimensional vector space ℜn, we may define the
norms

‖x‖p = (
n∑

i=1

x(i)p)1/p. (1)

The norm generates a metric d(x , y) ≥ 0 with the properties

d(x , y) = d(y , x)
d(x , z) ≤ d(x , y) + d(y , z)
d(x , y) = 0 if and only if x = y .

The definition of metric generalizes to a more general class of
spaces.
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Functional Space

In functional data analysis instead of vectors, a set of
functions (fi )

M
i=1 is available.

The functions can be considered as points in an infinite
dimensional space X with a metric d .

The L2-norm is a common choice (I is the domain, for
example a range of frequencies):

‖fi‖ = (

∫
I

|fi(t)|
2dt)1/2 (2)
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Semimetrics

A semimetric satisfies the properties of metric, except that
d(f , g) = 0 may hold for f 6= g .

Often an useful choice is using derivatives:

dq(f , g) = (

∫
I

|f (q)(t) − g (q)(t)|2dt)1/2. (3)

Many classical techniques like PCA can be implented with
respect to a semimetric.
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PCA as a semimetric

Denote by v1, . . . , vq the principal components in data.

Then an useful seminorm can be defined by

‖f ‖PCA = (

q∑
i=1

(

∫
I

f (t)vi (t)dt)2)1/2. (4)

Thus PCA offers an useful way to build a semimetric.
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Curse of Dimensionality

The effective dimensionality of functional data is often
relatively low.

Typically the first few principal components explain most
variability in the data, a phenomen with big industrial
applications.
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Tecator Data
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Experiment on the dimensionality of the

Tecator Data Set

For p = 1, . . . , 30, we discretize the Tecator data set with a
grid of p points.

After that the squares of the Euclidean norms of the resulting
vectors are calculated.

The resulting set of scalar is scaled so that all values are
between 0 and 1.

Finally the number of those points that fall to (0, 0.1) are
calculated.

The result is plotted together with the same experiment for
Gaussian i.i.d vectors.
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Result

Average correlation/PCA reveals the reason behind the result:
a large part of the variance in the data can be explained with
just one variable.

Instrinsic dimensionality estimation gives ≈ 2.
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Functional Kernels

Consider the functional i.i.d. random variables (fi )
M
i=1.

A kernel is a positive function on ℜ.

With the semimetric d , local weighting is given by

δi (g) =
K (d(g , fi )/h)

E [K (d(g , fi )/h)]
. (5)

The expectation can be approximated with empirical mean.
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Classification of Kernels

We always assume that
∫

K = 1.

Type I:
C11[0,1] ≤ K ≤ C21[0,1] (6)

Type II kernel has the support [0,1] and a non-positive
derivative with

C2 ≤ K ′ ≤ C1 < 0. (7)

An example of type II kernel is K (u) = 2(1 − u)I[0,1](u).
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Small Ball Probabilities

The small ball probability is a probabilistic concept related to
dimensionality defined by

φg (h) = P(fi ∈ B(g , h)). (8)

Under realistic assumptions, for type I and type II kernels,

Cφg (h) ≤ E [K (d(g , fi )/h)] ≤ C ′φg (h) (9)

for some constants C ,C ′.
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Conclusion

In this presentation formal tools for functional data analysis
were presented.

Analysis of the properties of functional data offers relatively
unexplored possiblities both for applications and basic
research.
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