Introduction to Nonparametric Functional Data Analysis

Elia Liitiäinen (eliitiai@cc.hut.fi)

Time Series Prediction Group
Adaptive Informatics Research Centre
Helsinki University of Technology, Finland

March 27, 2007
Introduction

- The functional context allows various non-classical tools.
- The infinite dimension of the data poses a challenge for nonparametric methods.
- In this presentation basic concepts for understanding functional data are introduced.
Outline

1. Semimetrics
2. Curse of Dimensionality
3. Case Study
4. Kernels
In the finite-dimensional vector space \mathbb{R}^n, we may define the norms

$$\|x\|_p = \left(\sum_{i=1}^{n} x(i)^p\right)^{1/p}. \quad (1)$$

The norm generates a metric $d(x, y) \geq 0$ with the properties

- $d(x, y) = d(y, x)$
- $d(x, z) \leq d(x, y) + d(y, z)$
- $d(x, y) = 0$ if and only if $x = y$.

The definition of metric generalizes to a more general class of spaces.
In functional data analysis instead of vectors, a set of functions \((f_i)_{i=1}^{M} \) is available. The functions can be considered as points in an infinite dimensional space \(X \) with a metric \(d \). The \(L^2 \)-norm is a common choice (\(I \) is the domain, for example a range of frequencies):

\[
\|f_i\| = \left(\int_{I} |f_i(t)|^2 dt \right)^{1/2}
\]
(2)
Semimetrics

- A semimetric satisfies the properties of metric, except that $d(f, g) = 0$ may hold for $f \neq g$.
- Often an useful choice is using derivatives:

$$d_q(f, g) = \left(\int_I |f^{(q)}(t) - g^{(q)}(t)|^2 dt \right)^{1/2}. \quad (3)$$

- Many classical techniques like PCA can be implemented with respect to a semimetric.
PCA as a semimetric

Denote by \(v_1, \ldots, v_q \) the principal components in data. Then an useful seminorm can be defined by

\[
\| f \|_{\text{PCA}} = \left(\sum_{i=1}^{q} \left(\int_I f(t)v_i(t)dt \right)^2 \right)^{1/2}.
\] (4)

Thus PCA offers an useful way to build a semimetric.
Curse of Dimensionality

- The effective dimensionality of functional data is often relatively low.
- Typically the first few principal components explain most variability in the data, a phenomenon with big industrial applications.
Experiment on the dimensionality of the Tecator Data Set

- For $p = 1, \ldots, 30$, we discretize the Tecator data set with a grid of p points.
- After that the squares of the Euclidean norms of the resulting vectors are calculated.
- The resulting set of scalar is scaled so that all values are between 0 and 1.
- Finally the number of those points that fall to (0, 0.1) are calculated.
- The result is plotted together with the same experiment for Gaussian i.i.d vectors.
Result

- Average correlation/PCA reveals the reason behind the result: a large part of the variance in the data can be explained with just one variable.
- Intrinsic dimensionality estimation gives ≈ 2.
Functional Kernels

- Consider the functional i.i.d. random variables \((f_i)_{i=1}^M\).
- A kernel is a positive function on \(\mathbb{R}\).
- With the semimetric \(d\), local weighting is given by
 \[
 \delta_i(g) = \frac{K(d(g, f_i)/h)}{E[K(d(g, f_i)/h)]}.
 \]
 (5)
- The expectation can be approximated with empirical mean.
Classification of Kernels

- We always assume that $\int K = 1$.
- Type I:
 \[C_1 1_{[0,1]} \leq K \leq C_2 1_{[0,1]} \]
 (6)
- Type II kernel has the support $[0,1]$ and a non-positive derivative with
 \[C_2 \leq K' \leq C_1 < 0. \]
 (7)
- An example of type II kernel is $K(u) = 2(1 - u)1_{[0,1]}(u)$.
The small ball probability is a probabilistic concept related to dimensionality defined by

\[\phi_g(h) = P(f_i \in B(g, h)). \] (8)

Under realistic assumptions, for type I and type II kernels,

\[C \phi_g(h) \leq E[K(d(g, f_i)/h)] \leq C' \phi_g(h) \] (9)

for some constants \(C, C' \).
Conclusion

- In this presentation formal tools for functional data analysis were presented.
- Analysis of the properties of functional data offers relatively unexplored possibilities both for applications and basic research.