Multimodal affect recognition

Tiina Lindh-Knuutila
Jaakko Väyrynen
14.3.2005

Multimodal affect recognition

Images for the data collection task: Japanese Female Facial Expression (JAFFE) database

Outline

- Introduction
- Emotions
- Problem domain
- Affect-recognition from single modalities
- Affect-recognition from multiple modalities
- Conclusions
- Data collection task for exercise

Background

- Psychological theories of affective states
- Emotional intelligence measures communication skills
 - recognition of affective states
 - interpersonal social communication
- Based on nonverbal communicative cues
Affective computing

- Target: emotionally intelligent human-computer interaction (HCI)
- Tasks
 - sensing
 - tracking
 - analysis
 - affect arousal

Motivation

- More human-like interaction
 - natural
 - trustworthy
 - efficacious
 - persuasive
 - may cause problems
- Benefits in surveillance, monitoring, interpreting, indexing, ...

Views on emotions (1)

- Classical view
 - basic expressions of emotions
 - happiness, anger, sadness, surprise, disgust, fear
 - hardwired into specific neural structures
 - recognized cross-culturally

Views on emotions (2)

- Russell
 - multidimensional affect space
 - critique of experiment design
- Ortony and Turner
 - components of emotions are linked with communicative displays
- Social constructivists (Averill)
 - interpretation and response to classes of situations
 - do not explain the genuine feeling
Multimodal emotional cues

- Multimodal analysis of multiple communication channels
- Modalities
 - sight, hearing, touch
- Cues from different modalities
 - e.g. vocal intonation, facial expression
- The modalities support each other
- Recognition depends on many factors

Emotions: summary

- No consensus of
 - basic emotions
 - expressions of emotions
- Limited set of emotions
- Display of emotions most likely culturally dependent

Fundamental research questions

- What is an affective state?
- What kinds of evidence warrants conclusions about affective states?
- How can various kinds of evidence be combined to generate conclusions about affective states?

Technical questions

- How should emotions be recognized?
 - different modalities
 - obtrusive methods
- Human-like performance
 - human-like sensors?
 - human-like recognition level?
Methodological questions

- What are the appropriate channels?
- How to combine the information conveyed by the channels?
- How to handle temporal aspects?
- How to make them context-sensitive?

Ideal system?

Affect-recognition from single modalities

- Choice of selected moods application dependent
- Context is not taken into account
- Modalities: haptic, visual, audio
 - single tactile-based affect recognition study
 - data collection not comfortable
 - signals measured
 - electromyogram from jaw, blood volume pressure, skin conductivity, respiration and heart rate
 - audio- and visual data based recognition next
Single modality: Face/visual

- Three subproblems
 - finding the face
 - detecting facial features
 - classifying data to affect categories
- Various classification techniques
- Focused at attempts to recognize a small set of posed prototypic facial expressions of basic emotions

Features with emotional correlation

<table>
<thead>
<tr>
<th></th>
<th>Happiness</th>
<th>Anger</th>
<th>Fear</th>
<th>Sadness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pitch</td>
<td>increase</td>
<td>increase in</td>
<td>increase in</td>
<td>decrease in</td>
</tr>
<tr>
<td></td>
<td>mean, range, variability</td>
<td>range, variability</td>
<td>mean, range</td>
<td>mean, range</td>
</tr>
<tr>
<td>Intensity</td>
<td>increased</td>
<td>increased</td>
<td>normal</td>
<td>decreased</td>
</tr>
<tr>
<td>Duration (speech rate)</td>
<td>increased rate, increased</td>
<td>increased, reduced rate, reduced rate</td>
<td>normal</td>
<td>decreased</td>
</tr>
<tr>
<td>Pitch contour</td>
<td>descending line, stressed syllables ascend frequently & rhythmically, irregular up & down inflection</td>
<td>disintegration in pattern great number of changes in the direction</td>
<td>descending line</td>
<td></td>
</tr>
</tbody>
</table>
Chen et al.
- Rule-based method
- Speech: pitch, intensity, pitch contours
- Video: facial features e.g., raising/lowering the eyebrows
- No separate test set
- Quantification of the recognition rate is not reported

De Silva and Ng
- Rule-based method
- Speech: pitch, pitch contours
- HMM-based classification into emotion classes
- Video: displacement and velocity of e.g., mouth corners with the optical flow method
- nearest neighbor classification into emotion classes
- 72% recognition rate for a reduced data set

Yoshitomi et al.
- Hybrid method
- Speech: pitch, intensity, pitch contours
 - HMM classification into emotions
- IR and VR images of maximal intensity for the syllables in the word 'Ta-ro'
 - extraction of regions of interests (mouth, eyebrow...)
 - differential image based on 'neutral' images
 - DCT of differential IR and VR images fed to an ANN
- Summing of classifications for the final decision
- 85% recognition rate for a reduced data set

Chen and Huang
- Set of methods
- Speech: pitch, intensity, speech rate
 - classification using Gaussian distributions
- Video: facial motion tracking
 - piecewise Bezier volume deformation model (3D)
 - 12 predefined facial muscle actions estimated
 - classification by a sparse network of winnows with naive Bayes output nodes
- 79% person-dependent recognition rate
- 53% person-independent recognition rate
Challenges: visual

- Scale
- Resolution
- Pose
- Occlusion
- Changing illumination
- Movement, tracking

Challenges: audio

- Unconstrained continuous speech
- naturally spoken
- rather meaningful than semantically neutral content
- range of speakers and languages
- Development of better affective state features

Challenges: multimodal input (1)

- Handling partial, missing and erroneous data
- methods: HMM, SVM
- Unsupervised learning of human behavioral grammar
- application, user and context-dependent grammars
- Integration of modalities at the feature level
- context dependent models
- methods: Bayesian inference, ...

Challenges: multimodal input (2)

- Affect-sensitive interpretation of multimodal input
- Context sensitivity
- Multiple-emotion categories
- Other than 'basic' emotions
- Unsupervised learning for the interpretation
Validation issues

- Proposal of a commonly used audio-visual database for the validation of the results

Conclusions

- Perceiving emotions has a multimodal nature
- State-of-the-art systems not quite mature yet
 - most use only a single modality
 - context is not taken into account
- Future

Data collection for the exercise

- Please fill in the distributed forms