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Introduction

“Clustering is a process of organizing objects into
groups whose members are similar in some way.”

Spectral clustering: data points as nodes of a
connected graph and clusters are found by
partitioning this graph, based on its spectral
decomposition, into subgraphs.

K-means clustering: divide the objects 1nto k

clusters such that some metric relative to the
centroids of the clusters 1s minimized.



Introduction

Spectral clustering

 How to define a graph for spectral methods?
 How to partition a graph into subgraphs?

K-means clustering

e How to choose K?

e  Which metric to use?



Spectral clustering / Algorithm

By Ng. Jordan and Weiss

Given a data set S = {sy,... 5.} to be clustered

Calculate the affinity matrix A; = exp(-lls; — sjI*/26?), if i #j and A;=0
where o7 is the scaling parameter

Define D to be the diagonal matrix whose (i,i)-element is the sum of A’s
i-th row, and construct the matrix L = D'V2 AD-12

Find k largest eigenvectors of L and form the matrix X = [x; X2 ...Xx ]

Form the matrix Y from X by normalizing each of X’s rows to have unit
length, Y; = X;/(Z; X;2)'2

Treating each row of Y as a point, cluster them into k clusters via K-
means or any other algorithm

Assign the original point s; to cluster j if and only if row i of the matrix Y
was assigned to cluster j
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Main difference between algorithms is the definition of L
Meila & Shi: L = DA, use largest eigenvectors, no normalization

Shi & Malik: L = D - A, use smallest eigenvectors, no normalization



Spectral clustering / Example

Graph of two groups...can you believe?
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Spectral clustering / Example

The second smallest eigenvector, unsorted

The second smallest

0.04
eigenvector is the Fiedler

0.03 vector, 1.e. algebraic
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The second smallest eigenvector, sorted
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Spectral clustering / Example

Permutated graph...looks like there 1s two groups
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K-means clustering / Algorithm

Standard version

Given an integer k and a set of n data points X  R?
Arbitrarily choose initial k centers C = {ci, ¢,..., i}, C € R4

For each i € {1,...,k}, set the cluster C; to be the set of points X that are
closer to ¢; than they are to ¢; for all j # i

For each i € {1,...,k}, set ¢; to be the center of mass of all points in C;,
i.e. C;, = (l/l Ci |) erc,-x

Repeat Steps 2 and 3 until C no longer changes
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K-means clustering

Standard practice to choose the initial centers uniformly at random from
X

For Step 2, ties may be broken arbitrarily, as long as the method is
consistent

Steps 2 and 3 guarantee to decrease the intra-cluster variance, 1.e. to
minimize the potential function ¢= X ymin ¢ llx-cll?, until it is no
longer possible to do so

Some extension:
* Different ways to choose k initial centers, e.g. K-means++

 Force the center point of each cluster to be one of the actual
points, 1.e. K-medoids

All in all: fast, simple, no approximation guarantees



A
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Two circles, K-means clustered (standard Matlab kmeans)
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Summary

If successtul, algorithm by Ng, Jordan & Weiss will
dramatically improve the results of the standard K-
means

Tip: eigs(xxx,xxx,’0pt’); , where opt has
essential role

Remember to normalize Y
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