
T-61.6020
PrefixSpan

Ari Nevalainen
ajnevala@cc.hut.fi

T-61.6020PrefixSpan – 1/25

OUTLINE

PROBLEM.

METHOD.

EXAMPLE

ALGORITHM.

SOME RESULTS.

CONCLUSIONS.

REFERENCES.

T-61.6020PrefixSpan – 2/25

PROBLEM

Sequential pattern mining with subsequences as
patterns.

A sequence database
<a(abc)(ac)d(cf)>
<(ad)c(bc)(ae)>
<(ef)(ab)(df)cb>
<eg(af)cbc>

Inside a subsequence (...) items are listed
alphabetically. An item can occur at most once in an
subsequence.

Subsequence with one item is writen without
brackets.

T-61.6020PrefixSpan – 3/25

METHOD, definition

PrefixSpan is like APriori but, uses prefix-projection
method to reduce a candidate generation.

ai,b j are items.

αi,β j are itemsets.

α,β are sequences of itemsets.

α = 〈α1,α2, ...,αn〉 and β = 〈β1,β2, ...,βm〉.

T-61.6020PrefixSpan – 4/25

METHOD, subsequence

α is subsequence of β, α ⊆ β if,
∃ 1≤ j1 < ... < jn ≤ m, such that
α2 ⊆ β j1,α2 ⊆ β j2, ...,αn ⊆ β jn .

〈a(ab)c ⊆ a(abc)da(ac)〉.

T-61.6020PrefixSpan – 5/25

METHOD, prefix, postfix

α = 〈α1,α2, ...,αn〉 and β = 〈β1,β2, ...,βm〉.

α is prefix of β if α1 = β1, ...,αm−1 = βm−1, αm ⊆ βm
and items in βm −αm are alphabtically after those in
αm .

a(ab)c is prefix of a(ab)(acd)d(ab) .

Sequence after prefix is postfix. (_d)d(ab) is postfix
in a(ab)(acd)d(ab) after a(ab)c.

T-61.6020PrefixSpan – 6/25

METHOD, project

Given β ⊆ α, γ ⊆ α, γ is β-project of α if β is prefix of
γ and there is no longer subsequence in α so that β
is its prefix.

c-project of a(ab)(cd)cd(ab) is (_d)cd(ab)

T-61.6020PrefixSpan – 7/25

METHOD, y-project.

Two types of last items, y and (_y).

With y: xyz... → z...

With y: (xyz)... → (_z)...

With (_y): (vyz)... → (_z)...

With (_y): (_xyz)... → (_z)...

Where x,z can be zero, one or more items and v one
or more items.

T-61.6020PrefixSpan – 8/25

Method, next item from y-project.

Two types of last items, y and (_y).

Every item that can be joined with y,(_y)

Items from b-project, <(_c)(abc)d(cf)>
(_c),a,b,c,(_c),d,c,f

Items from (_b)-project, <(_c)(abc)d(cf)>
(_c),a,b,c,d,c,f

T-61.6020PrefixSpan – 9/25

Method, next item from y-project.

Two types of last items, y and (_y).

With y: xyz → xi,y,zi

With y: (xyz) → xi,y,zi,(_zi)

With y: (_xyz) → (_xi),(_y),(_zi).

with (_y): xyz → xi,y,zi.

with (_y): (xyz) → xi,y,zi.

with (_y): (_z) → (_zi).

Where x,z can be zero,one or more items.

T-61.6020PrefixSpan – 10/25

Method, joining items.

Do projecting and scanning recursively until items
can not be scanned any more.

Join x with every item found from x-project and
sequences from next round.

x,y → xy.

x,(_y) → (xy).

(_x),y → (_x)y.

(_x),(_y) → (_xy).

T-61.6020PrefixSpan – 11/25

EXAMPLE

Finding sequential patterns startting with {ab}, and
with support 2, from the database below.

<a(abc)(ac)d(cf)>
<(ad)c(bc)(ae)>
<(ef)(ab)(df)cb>
<eg(af)cbc>

T-61.6020PrefixSpan – 12/25

EXAMPLE,cont

<a(abc)(ac)d(cf)>
<(ad)c(bc)(ae)>
<(ef)(ab)(df)cb>
<eg(af)cbc>

First we scan all items which have support at least 2.
a,b,c,d,e,f

a-project:
<(abc)(ac)d(cf)>
<(_d)c(bc)(ae)>
<(_b)(df)cb>
<(_f)cbc>

T-61.6020PrefixSpan – 13/25

EXAMPLE,cont

a-project:
<(abc)(ac)d(cf)>
<(_d)c(bc)(ae)>
<(_b)(df)cb>
<(_f)cbc>

Items with support at least 2: {a,b,c,d, f ,(_b)}

Items with support less than 2: {e,(_e),(_c),(_d),(_f)}

Pruned a-project:
<(abc)(ac)d(cf)>
<c(bc)a>
<(_b)(df)cb>
<cbc>

T-61.6020PrefixSpan – 14/25

EXAMPLE,cont

From a-project:
<(abc)(ac)d(cf)>
<c(bc)a>
<(_b)(df)cb>
<cbc>

b-project:
<(_c)(ac)d(cf)>
<(_c)a>
<c>

T-61.6020PrefixSpan – 15/25

EXAMPLE,cont

b-project:
<(_c)(ac)d(cf)>
<(_c)a>
<c>

Items with support at least 2: {(_c),a,c}

Items with support less than 2: {d,f}

Pruned b-project:
<(_c)(ac)c>
<(_c)a>
<c>

T-61.6020PrefixSpan – 16/25

EXAMPLE,cont

From b-project:
<(_c)(ac)c>
<(_c)a>
<c>

(_c)-project:
<(ac)c>
<a>

T-61.6020PrefixSpan – 17/25

EXAMPLE,cont

(_c)-project:
<(ac)c>
<a>

Items with support at least 2: {a}

Items with support less than 2: {c}

Pruned (_c)-project:
<a>
<a>

a-project:
<>

T-61.6020PrefixSpan – 18/25

EXAMPLE,cont

From b-project:
<(_c)(ac)c>
<(_c)a>
<c>

a-project:
<(_c)c>
Only one sequence. We can not get anything with
support 2.

c-project:
<c>
Only one sequence. We can not get anything with
support 2.

T-61.6020PrefixSpan – 19/25

EXAMPLE,items form a tree.

From the tree we get sequential patterns startting
with ab:
a ab a(bc) a(bc)a aba abc

T-61.6020PrefixSpan – 20/25

ALGORITHM

Find from database all items which have at least
support s. Add them to iList.

call prefixSpan(Database,iList,s)

program prefixSpan(Database,iList,s)
for all items x in iList:

Form x-project;
Find supported Items;
Prune x-project;
If x-project has more than one sequence:

nextLewel=prefixspan(x-project,Items,s);
IList=join(x,Items+nextLewel);

Return IList;

T-61.6020PrefixSpan – 21/25

SOME RESULTS, small support.

a b z f g h k l m p q r u v x
a b c d e f g h i j k l m n o p q r s t u v x y z
f g h i j k l m n o p q r s t u v x y z
k l m n o p q r s t u v x y z
p q r s t u v x y z
u v x y z

Support APriori PrefixSpan

6 0.001 s 0.003 s
5 0.009 s 0.146 s
4 0.748 s 0.160 s
3 362 s 3.435 s
2 > 5000 s 131 s

T-61.6020PrefixSpan – 22/25

SOME RESULTS, scalability.

Good scalability:

T-61.6020PrefixSpan – 23/25

CONCLUSIONS.

PrefixSpan is faster than FreeSpan and GSP, when
support value is small.

PrefixSpan-2 use pseudo projections and is faster
than prefixSpan.

Pseudo projections:
From <a(abc)(ac)d(cf)>
a-project <(abc)(ac)d(cf)>
ab-project <(_c)(ac)d(cf)>
Has lot of redundancy.

T-61.6020PrefixSpan – 24/25

REFERENCES.

. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U.
Dayal and M-C. Hsu. PrefixSpan: Mining Sequential
Patterns Efficiently by Prefix-Projected Pattern
Growth. In Proceedings of the 17th international
Conference on Data Engineering (April 02 - 06,
2001). ICDE ’01. IEEE Computer Society,
Washington, DC.
http://www-sal.cs.uiuc.edu/ hanj/pdf/span01.pdf

T-61.6020PrefixSpan – 25/25

	OUTLINE
	PROBLEM
	METHOD, definition
	METHOD, subsequence
	METHOD, prefix, postfix
	METHOD, project
	METHOD, y-project.
	Method, next item from y-project.
	Method, next item from y-project.
	Method, joining items.
	EXAMPLE
	EXAMPLE,cont
	EXAMPLE,cont
	EXAMPLE,cont
	EXAMPLE,cont
	EXAMPLE,cont
	EXAMPLE,cont
	EXAMPLE,cont
	EXAMPLE,items form a tree.
	ALGORITHM
	SOME RESULTS, small support.
	SOME RESULTS, scalability.
	CONCLUSIONS.
	REFERENCES.

