1-61.6020
PrefixSpan

Ari Nevalainen

aj neval a@c. hut . fi

T-61.6020PrefixSpan — 1

OUTLINE

m PROBLEM.

m METHOD.

m EXAMPLE

m ALGORITHM.

m SOME RESULTS.
m CONCLUSIONS.
m REFERENCES.

T-61.6020PrefixSpan — 2

PROBLEM

m Seguential pattern mining with subsequences as
patterns.

m A sequence database
<a(abc)(ac)d(cf)>
<(ad)c(bc)(ae)>
<(ef)(ab)(df)cb>
<eg(af)cbc>

m Inside a subsequence (...) items are listed
alphabetically. An item can occur at most once in an
subsequence.

m Subseqgquence with one item is writen without
brackets.

T-61.6020PrefixSpan — 3

METHOD, definition

m PrefixSpan is like APriori but, uses prefix-projection
method to reduce a candidate generation.

= g, bj are items.
= 0, [3j are itemsets.
® A, [3 are sequences of itemsets.

md= <a17a27“'7aﬂ> and B — <Bl7BZ;"'7Bm>'

T-61.6020PrefixSpan — 4

METHOD, subsequence

m O is subsequence of B, a C [if,
31< 1 <...<]Jn<m, such that

a2 g Bj17a2 g [‘3]27 ---»O(n g Bjn -

m (a(ab)c C a(abc)da(ac)).

T-61.6020PrefixSpan — 5

METHQOD, prefix, postfix

ma= <G1,G2,...,Gn> and B — <B].7[327'”7Bm>'

maisprefixof Bifa1 =B1,....,0m-1=Bm-1, dm C Bm
and items in 3, — 0y, are alphabtically after those in
Om .

m a(ab)c s prefix of a(ab)(acd)d(ab) .

m Sequence after prefix is postfix. (_d)d(ab) is postfix
in a(ab)(acd)d(ab) after a(ab)c.

T-61.6020PrefixSpan — 6

METHOD, project

m Given BC a,yCaq,yis [3-project of a if B is prefix of
Y and there is no longer subsequence in d so that (3
IS Its prefix.

m C-project of a(ab)(cd)cd(ab) is (_d)cd(ab)

T-61.6020PrefixSpan — 7

METHOD, y-project.

m Two types of last items, y and (_Y).
m With y: Xyz... — Z...

m Withy: (Xyz)... — (_2)...

m With (_y): (w2)... — (_2)...

m With (_y): (_Xy2)... — (_2)...

m Where X, Z can be zero, one or more items and v one
or more items.

T-61.6020PrefixSpan — 8

Method, next item from y-project.

m Two types of last items, y and (_Y).

m Every item that can be joined with y,(_Y)

m [tems from b-project, <(_c)(abc)d(cf)>
(_ ¢),a,b,c,(c),d,c,f

m [tems from (_Db)-project, <(_c)(abc)d(cf)>
(_ ¢),a,b,c,d,cf

T-61.6020PrefixSpan — 9

Method, next item from y-project.

m Two types of last items, y and (_Y).
m Withy: XyzZ — X;,V, Z

m With y: (Xyz) — Xi,V,%,(_z)

m Withy: (_xyz) — (_Xi),(_Y),(_z).
m with (_Y): Xyz— X,V, Z.

m with (_Y): (Xy2) — Xi,V, Z.

= with (_y): (_2) — (_2).
m Where x,z can be zero,one or more items.

T-61.6020PrefixSpan — 10

Method, joining items.

m Do projecting and scanning recursively until items
can not be scanned any more.

m Join x with every item found from x-project and
sequences from next round.

mXY— XY.

=X (_Yy) — (Xy).

= (_X),y— (LX)

= (_x),(Ly) — ().

T-61.6020PrefixSpan — 11

EXAMPLE

m Finding sequential patterns startting with {ab}, and
with support 2, from the database below.

m <a(abc)(ac)d(cf)>
<(ad)c(bc)(ae)>
<(ef)(ab)(df)cb>
<eg(af)cbc>

T-61.6020PrefixSpan — 12

EXAMPLE,cont

m <a(abc)(ac)d(cf)>
<(ad)c(bc)(ae)>
<(ef)(ab)(df)cb>
<eg(af)cbc>

m First we scan all items which have support at least 2.
a,b,c,d,e,f

B a-project:
<(abc)(ac)d(cf)>
<(_d)c(bc)(ae)>
<(_b)(df)cb>
<(_fcbc>

T-61.6020PrefixSpan — 13

EXAMPLE,cont

m a-project:
<(abc)(ac)d(cf)>
<(_d)c(bc)(ae)>
<(_b)(df)cb>
<(_fHcbc>

m [tems with support at least 2: {a,b,c,d, f,(_b)}
m [tems with support less than 2: {e,(_e),(_c),(_d),(_)}

m Pruned a-project:
<(abc)(ac)d(cf)>
<c(bc)a>

<(_b)(df)cb>

<chc>

T-61.6020PrefixSpan — 14

EXAMPLE,cont

m From a-project:

<(a
<c(

<

nc)(ac)d(cf)>
nc)a>

5)(df)ch>

<chc>

m b-project:
<(_c)(ac)d(cf)>
<(_c)a>

<C>

T-61.6020PrefixSpan — 15

EXAMPLE,cont

m b-project:
<(_c)(ac)d(ct)>
<(_c)a>

<c>
m [tems with support at least 2: {(_c),a,c}
m [tems with support less than 2: {d,f}

m Pruned b-project:
<(_c)(ac)c>
<(_c)a>

<C>

T-61.6020PrefixSpan — 16

EXAMPLE,cont

m From b-project:
<(_c)(ac)c>
<(_c)a>
<c>

m (_C)-project:
<(ac)c>
<a>

T-61.6020PrefixSpan — 17

EXAMPLE,cont

m (_C)-project:
<(ac)c>
<a>

m [tems with support at least 2: {a}
m [tems with support less than 2: {c}

m Pruned (_c)-project:
<a>
<a>

m a-project:
<>

T-61.6020PrefixSpan — 18

EXAMPLE,cont

m From b-project:
<(_c)(ac)c>
<(_c)a>
<c>
m a-project:
<(_c)c>
Only one seguence. We can not get anything with
support 2.
m c-project:
<c>
Only one seguence. We can not get anything with
support 2.

T-61.6020PrefixSpan — 19

EXAMPLE, items form a tree.

L=
T |

m From the tree we get sequential patterns startting
with ab:
a ab a(bc) a(bc)a aba abc

T-61.6020PrefixSpan — 20

ALGORITHM

m Find from database all items which have at least
support s. Add them to IList.

m call prefixSpan(Database,iList,s)

m program prefixSpan(Database,iList,s)
for all items X in IList:

~orm X-project;

~ind supported Items;

Prune X-project;

f x-project has more than one sequence:
nextLewel=prefixspan(x-project,ltems,s);
IList=join(x,ltems+nextLewel);

Return IList;

T-61.6020PrefixSpan — 21

SOME RESULTS, small support.

abzfghklmpqgruvx
abcdefghijklmnopqrstuvxyz
fghijklmnopqrstuvxyz
Kilmnopqrstuvxyz
pqrstuvxyz

UvXxyz
Support | APriori | PrefixSpan
6 0.001 s 0.003 s
5 0.009 s 0.146 s
4 0.748 s 0.160 s
3 362 s 3.435s
2 > 5000 s 131s

T-61.6020PrefixSpan — 22

SOME RESULTS, scalabillity.

m Good scalability:

prefizspan

253
prefixspan -2

() 500

thousand sequences

T-61.6020PrefixSpan — 23

CONCLUSIONS.

m PrefixSpan is faster than FreeSpan and GSP, when
support value is small.

m PrefixSpan-2 use pseudo projections and is faster
than prefixSpan.

m Pseudo projections:
From <a(abc)(ac)d(cf)>
a-project <(abc)(ac)d(cf)>
ab-project <(_c)(ac)d(cf)>
Has lot of redundancy.

T-61.6020PrefixSpan — 24

REFERENCES.

m . Pel, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U.
Dayal and M-C. Hsu. PrefixSpan: Mining Sequential
Patterns Efficiently by Prefix-Projected Pattern
Growth. In Proceedings of the 17th international
Conference on Data Engineering (April 02 - 06,
2001). ICDE '01. IEEE Computer Society,
Washington, DC.
http://www-sal.cs.uiuc.edu/ hanj/pdf/span01.pdf

T-61.6020PrefixSpan — 25

	OUTLINE
	PROBLEM
	METHOD, definition
	METHOD, subsequence
	METHOD, prefix, postfix
	METHOD, project
	METHOD, y-project.
	Method, next item from y-project.
	Method, next item from y-project.
	Method, joining items.
	EXAMPLE
	EXAMPLE,cont
	EXAMPLE,cont
	EXAMPLE,cont
	EXAMPLE,cont
	EXAMPLE,cont
	EXAMPLE,cont
	EXAMPLE,cont
	EXAMPLE,items form a tree.
	ALGORITHM
	SOME RESULTS, small support.
	SOME RESULTS, scalability.
	CONCLUSIONS.
	REFERENCES.

