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Bayesian methods and Chow-Lee trees

Bayesian classifiers

Popular in spam filters

A simple statistical method for classifying content, based on
Bayes’ theorem

Teaching the classifier (e.g. by words of documents)

A fairly small number of documents needed
Each classified to one of the classes
P(Xi |C ) calculated for each word Xi and each class C

Classification based on the words of the target document
using the probabilities calculated during teaching
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Bayesian methods and Chow-Lee trees

Näıve Bayes

Näıve Bayes assumes fully independent variables Xi

Seems to work well in practice, even when variables are
strongly dependent

Zhang041 provides formal analysis

[...] no matter how strong the dependencies among attributes
are, naive Bayes can still be optimal if the dependencies
distribute evenly in classes, or if the dependencies cancel each
other out.

1H. Zhang (2004) The Optimality of Naive Bayes
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Bayesian methods and Chow-Lee trees

Terminology

Underlearning refers to the situation where the model does not
sufficiently classify the data; some information is left unused

Overlearning is the opposite, when the model is too eager to
explain things from the noise of the input data, rather than
real information

Bayesian learning solves the trade-off between the two

The probability of event X , P(X ), is called the priori of X

A conditional probability, P(X |C ), is called the posterior
probability because it is derived from or depends upon the
specified value of C
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Bayesian methods and Chow-Lee trees

Likelihood function

Likelihood function L(Y |X ) allows estimating unknown
parameters Y based on known outcomes X , so it is a sense
the backwards of probability, which does the opposite with
P(X |Y )

Bayes’ theorem formalizes this as follows:

P(X |Y ) =
P(Y |X )P(X )

P(Y )

∝ L(X |Y )P(X )

The ratio L(X |Y )/P(Y ) is sometimes called normalized
likelihood as it eliminates the normalization factor from the
Bayes equation
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Bayesian methods and Chow-Lee trees

Bayes’ theorem

Using the terms defined,

posterior =
likelyhood ∗ prior

normalizing constant

= normalized likelyhood ∗ prior
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Bayesian methods and Chow-Lee trees

Chow-Liu tree

A method for approximating joint probability distributions of n
dependent random variables X1...Xn

E.g. P(X1, X2, ..., X6) ≈
P(X1)P(X2|X1)P(X3|X2)P(X4|X2)P(X5|X2)P(X6|X5)

X

XXX

X2

3 4 5

6

X1

Can be represented as a tree of dependencies

Only one new variable in each factor
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Chow-Liu tree

Construction of optimal dependency tree

The tree is constructed so that Kullback–Leibler divergence2

between the actual distribution and the approximation is
minimized

The paper shows that the divergence is
D = −

∑
I (Xi ; Xi−1) +

∑
H(Xi )− H(X1, ..., Xn), where

I (...) is the mutual information between the variables, and
H(...) is the joint entropy of the variables

Since only the first term depends on the ordering of the tree,
maximizing the sum will provide the smallest divergence

2the difference between two probability distributions
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Chow-Liu tree

Construction of optimal dependency tree

Chow & Liu algorithm works by finding the maximum
information pair on each round and creating a link between
them

The root node in this graph (maximum spanning tree) may be
chosen arbitrarily

Only the information between connected nodes, i.e. the sum of
link weights, affects divergence
A spanning tree is an undirected acyclic graph
Once the root is chosen, the structure can be seen as a tree
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Mutual information

Calculating mutual information

Before tree construction, the mutual information of each node
pair must be calculated

Mutual information is a quantity that measures the mutual
dependence of two variables

For continuous variables
I (X ; Y ) :=

∫
Y

∫
X p(x , y) log2

(
p(x ,y)

p1(x) p2(y)

)
dx dy

For discrete variables, replace the integrals with sums

p(x , y) is the joint probability (density) function of the
variables and p1 & p2 are marginal probability functions of x
and y , respectively

Base 2 logarithm gives the result in bits, but using different
base only adds a constant multiplier
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Mutual information

Calculating mutual information

Alternatively, entropies may be used in place of probability
functions

I (X ; Y ) = H(X )− H(X |Y )

= H(Y )− H(Y |X )

= H(X ) + H(Y )− H(X , Y )

H(Var) is the entropy of a variable

H(VarA|VarB) is the entropy of VarA on the condition VarB

H(VarA, VarB) is the joint entropy of the variables
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Mutual information

Entropy vs. probabilities

The previous equivalency comes from the definition of entropy

H(X ) :=

∫
X

p(x) log2(p(x)) dx

H(X1, X2) :=

∫
X2

∫
X1

p(x1, x2) log2(p(x1, x2)) dx1 dx2

H(X1|X2) :=

∫
X2

∫
X1

p(x1, x2) log2(p(x1|x2)) dx1 dx2

= H(X1, X2)− H(X2)
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Example

Example

Input data:
p1(1) = 0.53, p2(1) = 0.42, p3(1) = 0.39

x1x2x3 P(x1, x2, x3) p1(x1)p2(x2)p3(x3)
000 0.15 0.166
001 0.14 0.106
010 0.00 0.120
011 0.18 0.077
100 0.29 0.188
101 0.00 0.120
110 0.17 0.135
111 0.07 0.087

Mutual information matrix:
nan 0.004 0.242
0.004 nan 0.093
0.242 0.093 nan
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Extra material and program code

chowlee.cpp 1/2

#i n c l u d e <cmath>
#i n c l u d e <c s t d l i b >
#i n c l u d e <i o s t r eam>

doub l e p ( doub l e prob , boo l t e s t ) { r e t u r n t e s t ? prob : 1 . 0 − prob ; }

i n t main ( vo i d ) {
u s i n g namespace s td ;
i n t f r e q [ 8 ] = {0} ;
i n t b i t f r e q [ 3 ] = {0} ;
// J o i n t f r e q u e n c i e s n uv ( i , j ) ˜ j o i n t f r e q [ i ] [ j ] [ u ] [ v ]
i n t j o i n t f r e q [ 3 ] [ 3 ] [ 2 ] [ 2 ] = { {0} } ;
f o r ( i n t round = 0 ; round < 100 ; ++round ) {

i n t v a l = rand ( ) % 7 ;
i f ( v a l > 2) ++va l ;
i f ( v a l % 3 == 2) v a l ˆ= 1 ;

++f r e q [ v a l ] ;
boo l b i t s [ 3 ] ;
b i t s [ 0 ] = v a l & 4 ;
b i t s [ 1 ] = v a l & 2 ;
b i t s [ 2 ] = v a l & 1 ;
f o r ( i n t i = 0 ; i < 3 ; ++i ) {

i f ( b i t s [ i ] ) ++b i t f r e q [ i ] ;
f o r ( i n t j = 0 ; j < 3 ; ++j ) ++j o i n t f r e q [ i ] [ j ] [ b i t s [ i ] ] [ b i t s [ j ] ] ;

}
}
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Extra material and program code

chowlee.cpp 2/2

cout << b i t f r e q [ 0 ] << ” ” << b i t f r e q [ 1 ] << ” ” << b i t f r e q [ 2 ] << end l ;
doub l e prob [ 8 ] , n a i v ep r ob [ 8 ] ;
f o r ( i n t i = 0 ; i < 8 ; ++i ) {

prob [ i ] = 1e−2 ∗ f r e q [ i ] ;
n a i v ep r ob [ i ] = p (1 e−2∗b i t f r e q [ 0 ] , i & 4) ∗ p (1 e−2∗b i t f r e q [ 1 ] , i & 2) ∗ p (1 e−2∗b i t f r e q [ 2 ] , i & 1 ) ;
cout << prob [ i ] << ” ” << na i v ep r ob [ i ] << end l ;

}
f o r ( i n t i = 0 ; i < 3 ; ++i ) {

f o r ( i n t j = 0 ; j < 3 ; ++j ) {
doub l e i n f o rma t i o n = 0 . 0 ;
f o r ( i n t k = 0 ; k < 4 ; ++k ) {

boo l u = k /2 , v = k%2;
doub l e tmp = doub l e ( j o i n t f r e q [ i ] [ j ] [ u ] [ v ] ) / ( j o i n t f r e q [ i ] [ j ] [ 0 ] [ 0 ] + j o i n t f r e q [ i ] [ j ] [ 0 ] [ 1 ] + j o i n t f r e q [ i ] [ j ] [ 1 ] [ 0 ] + j o i n t f r e q [ i ] [ j ] [ 1 ] [ 1 ] ) ;
i n f o rma t i o n += tmp∗ l o g ( tmp/(p (1 e−2∗b i t f r e q [ i ] , u)∗p (1 e−2∗b i t f r e q [ j ] , v ) ) ) / l o g ( 2 . 0 ) ;

}
cout << i n f o rma t i o n << ’\ t ’ ;

}
cout << end l ;

}
}
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Extra material and program code

Further reading

Zhang04 – http://www.cs.unb.ca/profs/hzhang/publications/FLAIRS04ZhangH.pdf

Chow-Liu – http://ieeexplore.ieee.org/iel5/18/22639/01054142.pdf (free access from TKK)

http://en.wikipedia.org/wiki/Chow-Liu_tree
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