Mixture Models in Data Analysis Naïve Bayes / Chow-Liu Tree Model

T-61.6020 Special Course in Computer and Information Science II P

Lasse Kärkkäinen

Helsinki University of Technology

2008-02-13

Helsinki University of Technology

< □ > < 同 >

Lasse Kärkkäinen

1 Introduction

Bayesian methods and Chow-Lee trees

2 Chow-Liu

- Chow-Liu tree
- Mutual information
- Example

3 Material

Extra material and program code

Introduction ●00000	Chow-Liu oo ooo o	Material 000
Bayesian methods and Chow-Lee trees		

Bayesian classifiers

- Popular in spam filters
- A simple statistical method for classifying content, based on Bayes' theorem
- Teaching the classifier (e.g. by words of documents)
 - A fairly small number of documents needed
 - Each classified to one of the classes
 - $P(X_i|C)$ calculated for each word X_i and each class C
- Classification based on the words of the target document using the probabilities calculated during teaching

Introduction 0●0000	Chow-Liu oo ooo o	Material 000
Bayesian methods and Chow-Lee trees		

- Naïve Bayes assumes fully independent variables X_i
- Seems to work well in practice, even when variables are strongly dependent
- Zhang04¹ provides formal analysis
 - [...] no matter how strong the dependencies among attributes are, naive Bayes can still be optimal if the dependencies distribute evenly in classes, or if the dependencies cancel each other out.

¹H. Zhang (2004) The Optimality of Naive Bayes $\rightarrow \langle a \rangle \rightarrow \langle a \rangle \rightarrow \langle a \rangle$

Lasse Kärkkäinen

Introduction 00●000	Chow-Liu 00 0000 0	Material 000
Bayesian methods and Chow-Lee trees		

Terminology

- Underlearning refers to the situation where the model does not sufficiently classify the data; some information is left unused
- Overlearning is the opposite, when the model is too eager to explain things from the noise of the input data, rather than real information
- Bayesian learning solves the trade-off between the two
- The probability of event X, P(X), is called the *priori* of X
- A conditional probability, P(X|C), is called the *posterior* probability because it is derived from or depends upon the specified value of C

Introduction 000●00	Chow-Liu oo ooo o	Material 000
Bayesian methods and Chow-Lee trees		

Likelihood function

- Likelihood function L(Y|X) allows estimating unknown parameters Y based on known outcomes X, so it is a sense the backwards of probability, which does the opposite with P(X|Y)
- Bayes' theorem formalizes this as follows:

$$P(X|Y) = \frac{P(Y|X)P(X)}{P(Y)}$$
$$\propto L(X|Y)P(X)$$

The ratio L(X|Y)/P(Y) is sometimes called normalized likelihood as it eliminates the normalization factor from the Bayes equation

Introduction 0000€0	Chow-Liu oo ooo o	Material 000
Bayesian methods and Chow-Lee trees		

Using the terms defined,

posterior =
$$\frac{likelyhood * prior}{normalizing constant}$$

= normalized likelyhood * prior

Lasse Kärkkäinen

Mixture Models

Helsinki University of Technology

A B +
 A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Introduction 00000●	Chow-Liu oo ooo o	Material 000
Bayesian methods and Chow-Lee trees		

Chow-Liu tree

- A method for approximating joint probability distributions of n dependent random variables X₁...X_n
- E.g. $P(X_1, X_2, ..., X_6) \approx$ $P(X_1)P(X_2|X_1)P(X_3|X_2)P(X_4|X_2)P(X_5|X_2)P(X_6|X_5)$

- Can be represented as a tree of dependencies
- Only one new variable in each factor

Chow-Liu tree

Construction of optimal dependency tree

- The tree is constructed so that Kullback–Leibler divergence² between the actual distribution and the approximation is minimized
- The paper shows that the divergence is $D = -\sum_{i=1}^{n} I(X_i; X_{i-1}) + \sum_{i=1}^{n} H(X_i) - H(X_1, ..., X_n), \text{ where}$
 - I(...) is the mutual information between the variables, and
 H(...) is the joint entropy of the variables
- Since only the first term depends on the ordering of the tree, maximizing the sum will provide the smallest divergence

Lasse Kärkkäinen

²the difference between two probability distributions $\rightarrow \langle \neg \rangle \rightarrow \langle \neg \rangle \rightarrow \langle \neg \rangle$

Chow-Liu tree

Construction of optimal dependency tree

- Chow & Liu algorithm works by finding the maximum information pair on each round and creating a link between them
- The root node in this graph (maximum spanning tree) may be chosen arbitrarily
 - Only the information between connected nodes, i.e. the sum of link weights, affects divergence
 - A spanning tree is an undirected acyclic graph
 - Once the root is chosen, the structure can be seen as a tree

Mutual information

Calculating mutual information

- Before tree construction, the mutual information of each node pair must be calculated
- Mutual information is a quantity that measures the mutual dependence of two variables
- For continuous variables $I(X; Y) := \int_Y \int_X p(x, y) \log_2 \left(\frac{p(x, y)}{p_1(x) p_2(y)} \right) dx dy$
- For discrete variables, replace the integrals with sums
- p(x, y) is the joint probability (density) function of the variables and p₁ & p₂ are marginal probability functions of x and y, respectively
- Base 2 logarithm gives the result in bits, but using different base only adds a constant multiplier

Mutual information

Calculating mutual information

 Alternatively, entropies may be used in place of probability functions

$$I(X; Y) = H(X) - H(X|Y)$$

= $H(Y) - H(Y|X)$
= $H(X) + H(Y) - H(X, Y)$

- *H*(*Var*) is the entropy of a variable
- *H*(*VarA*|*VarB*) is the entropy of *VarA* on the condition *VarB*
- *H*(*VarA*, *VarB*) is the joint entropy of the variables

	Chow-Liu	Material
	00 00● 0	
Mutual information		

Entropy vs. probabilities

The previous equivalency comes from the definition of entropy

$$H(X) := \int_{X} p(x) \log_2(p(x)) dx$$

$$H(X_1, X_2) := \int_{X_2} \int_{X_1} p(x_1, x_2) \log_2(p(x_1, x_2)) dx_1 dx_2$$

$$H(X_1 | X_2) := \int_{X_2} \int_{X_1} p(x_1, x_2) \log_2(p(x_1 | x_2)) dx_1 dx_2$$

$$= H(X_1, X_2) - H(X_2)$$

Helsinki University of Technology

Lasse Kärkkäinen

Introduction 000000	Chow-Liu ○○ ○○○	Material 000
Example		

Input data:

$p_1(1) = 0.53, p_2(1) = 0.42, p_3(1) = 0.39$		
x1x2x3	$P(x_1, x_2, x_3)$	$p_1(x_1)p_2(x_2)p_3(x_3)$
000	0.15	0.166
001	0.14	0.106
010	0.00	0.120
011	0.18	0.077
100	0.29	0.188
101	0.00	0.120
110	0.17	0.135
111	0.07	0.087

Mutual information matrix:

nan	0.004	0.242
0.004	nan	0.093
0.242	0.093	nan

Lasse Kärkkäinen

Introduction 000000	Chow-Liu oo ooo o	Material ●00
Extra material and program code		

chowlee.cpp 1/2

```
#include <cmath>
     #include <cstdlib>
     #include <iostream>
     double p(double prob, bool test) { return test ? prob : 1.0 - \text{prob}; }
     int main(void) {
          using namespace std;
          int freq [8] = \{0\};
          int bitfreq [3] = \{0\};
          11
             Joint frequencies n_uv(i,j) ~ jointfreq[i][j][u][v]
          int jointfreq [3][3][2][2] = { {0} };
          for (int round = 0; round < 100; ++round) {
              int val = rand() \% 7:
              if (val > 2) + val;
              if (val % 3 == 2) val \hat{}= 1;
              ++freq[val];
              bool bits [3];
              bits[0] = val \& 4;
              bits[1] = val \& 2:
              bits[2] = val \& 1:
              for (int i = 0; i < 3; ++i) {
                   if (bits[i]) ++bitfreg[i];
                   for (int j = 0; j < 3; ++j) ++jointfreq[i][j][bits[i]][bits[j]];
              }
                                                                      - ∢ ∩ ¬ >
Lasse Kärkkäinen
                                                                          Helsinki University of Technology
Mixture Models
```

Introduction 000000	Chow-Liu 00 000 0	Material 0●0
Extra material and program code		

chowlee.cpp 2/2

```
cout << bitfreq [0] << " " << bitfreq [1] << " " << bitfreq [2] << endl;
double prob[8], naiveprob[8];
for (int i = 0; i < 8; ++i) {
    prob[i] = 1e-2 * freq[i];
    naiveprob[i] = p(1e-2*bitfreq[0], i \& 4) * p(1e-2*bitfreq[1], i \& 2) * p(1e-2*bitfreq[1], i \& 2)
    cout << prob[i] << " " << naiveprob[i] << endl;
for (int i = 0; i < 3; ++i) {
    for (int i = 0; i < 3; ++i) {
        double information = 0.0:
        for (int k = 0: k < 4: +++k) {
            bool u = k/2, v = k\%2;
            double tmp = double(jointfreq[i][j][u][v])/(jointfreq[i][j][0][0]+jointf
            information += tmp*log(tmp/(p(1e-2*bitfreq[i], u)*p(1e-2*bitfreq[i], v))
        cout << information << '\t';
    cout << endl:
```

▲ 同 ▶ → 三 ▶

Introduction 000000	Chow-Liu 00 000 0	Material 00●
Extra material and program code		

Further reading

- Zhang04 http://www.cs.unb.ca/profs/hzhang/publications/FLAIRS04ZhangH.pdf
- Chow-Liu http://ieeexplore.ieee.org/ie15/18/22639/01054142.pdf (free access from TKK)
- http://en.wikipedia.org/wiki/Chow-Liu_tree

Lasse Kärkkäinen