k Nearest Neighbors algorithm (kNN)

László Kozma
Lkozma@cis.hut.fi

Helsinki University of Technology
T-61.6020 Special Course in Computer and Information Science

20. 2. 2008
Supervised Learning

- Data set:
 - **Training** (labeled) data: \(T = \{(x_i, y_i)\} \)
 - \(x_i \in \mathbb{R}^p \)
 - **Test** (unlabeled) data: \(x_0 \in \mathbb{R}^p \)

- Tasks:
 - **Classification**: \(y_i \in \{1, \ldots, J\} \)
 - **Regression**: \(y_i \in \mathbb{R} \)

- Given new \(x_0 \) predict \(y_0 \)

- Methods:
 - Model-based
 - Memory-based
Classification

credit risk assessment (source: Alpaydin ...)

Low-Risk

High-Risk
Regression

Camera prices in zoom-megapixel space

source: O’Reilly ...
k NN Algorithm

• 1 NN
 • Predict the same value/class as the nearest instance in the training set

• k NN
 • find the k closest training points (small $\|x_i - x_0\|$ according to some metric, for ex. euclidean, manhattan, etc.)
 • predicted class: majority vote
 • predicted value: average weighted by inverse distance
1 NN
1 NN - Voronoi diagram

source: Duda, Hart ...
k NN - Example

source: Duda, Hart ...
k NN

- Classification
 - use majority voting
- Binary classification
 - k preferably odd to avoid ties
- Regression
 - $y_0 = \sum_{i=1}^{k} w_i y_i$
 - weights:
 - $w_i = \frac{1}{k}$
 - $w_i \sim 1 - \|x_i - x_0\|$
 - $w_i \sim k - \text{rank} \|x_i - x_0\|$
k NN Classification

1. Calculate distances of all training vectors to test vector
2. Pick k closest vectors
3. Calculate average/majority
k NN Algorithm

- Memory-based, no explicit training or model, "lazy learning"
- In its basic form one of the most simple machine learning methods
- Gives the maximum likelihood estimation of the class posterior probabilities
- Can be used as a baseline method
- Many extensions
k NN

- Easy to understand and program
- Explicit reject option
 - if there is no majority agreement
- Easy handling of missing values
 - restrict distance calculation to subspace
- Asymptotic misclassification rate (as the number of data points $n \to \infty$) is bounded above by twice the Bayes error rate. (see Duda, Hart...)
k NN

- affected by local structure
- sensitive to noise, irrelevant features
- computationally expensive $O(nd)$
- large memory requirements
- more frequent classes dominate result (if distance not weighed in)
- curse of dimensionality: high nr. of dimensions and low nr. of training samples:
 - "nearest" neighbor might be very far
 - in high dimensions "nearest" becomes meaningless
Neighborhood size

- Choice of k
 - smaller $k \Rightarrow$ higher variance (less stable)
 - larger $k \Rightarrow$ higher bias (less precise)
 - Proper choice of k dependends on the data:
 - Adaptive methods, heuristics
 - Cross-validation
Distance metric

- Distance used:
 - Euclidean, Manhattan, etc.
- Issue: scaling of different dimensions
- Selecting/scaling features: common problem for all methods
- but affects k NN even more

→ use mutual information between feature and output
- "Euclidean distance doesn’t need any weights for features": just an illusion !!
Extensions

- Reducing computational load:
 - Space partitioning (quad-tree, locality sensitive hashing, etc.)
 - Cluster training data, check input vector only against nearest clusters
 - Editing (remove useless vectors, for example those surrounded by same-class vectors)
 - Partial distance (take distance in less dimensions first)
 - Reduce training set (just sample, or use vector quantization)
Extensions

- Improving results
 - Preprocessing: smoothing the training data (remove outliers, isolated points)
 - Adapt metric to data
Discriminant Adaptive Nearest Neighbor Classification (DANN)

- k NN is based on the assumption that class probabilities are locally approximately constant
- Not true for most neighborhoods
- Solution: change the metric, so that in the new neighborhoods, class probabilities are "more" constant
DANN - Motivation
DANN - Example

- Idea: DANN creates a neighborhood that is elongated along the "true" decision boundary, flattened orthogonal to it.
- Question: What is the "true" decision boundary?
Linear Discriminant Analysis

- Find \mathbf{w} that maximizes $J(\mathbf{w}) = \frac{(m_1 - m_2)^2}{s_1^2 + s_2^2}$

 (source: Alpaydin)
Linear Discriminant Analysis

- **Solution:** \(w = (S_1^2 + S_2^2)^{-1}(m_2 - m_1) \)
- **\(S_i \) - class covariance**
- **Idea:** find nearest neighbor using distance between projected points (same as elongating the neighborhood parallel to boundary)
- **Squared distance becomes:**
 \[
 D(x, x_0) = (x - x_0)^T w w^T (x - x_0)
 \]
• Squared distance between projections:

\[D(x, x_0) = (x - x_0)^T w w^T (x - x_0) \] \hspace{1cm} (1)

• But we had \(w = (S_1^2 + S_2^2)^{-1}(m_2 - m_1) \)

• Denote:
 • \(W = S_1^2 + S_2^2 \) \hspace{1cm} (within-class covariance)
 • \(B = (m_2 - m_1)(m_2 - m_1)^T \) \hspace{1cm} (between-class covariance)

• We get \(w w^T = W^{-1} B W^{-1} \) \hspace{1cm} (denote by \(\Sigma \))
DANN

- Squared distance using 'metric' Σ (just a matrix with weights)

 $$D(x, x_0) = (x - x_0)^T \Sigma (x - x_0),$$

- if $\Sigma = I \Rightarrow$ Euclidean squared distance

- Reminder: Σ is approximation of local LDA distance

 $$\Sigma = W^{-1}BW^{-1} \quad (2)$$

- to avoid neighborhoods infinitely stretching in one direction:

 $$\Sigma = W^{-1/2}[W^{-1/2}BW^{-1/2} + \epsilon I]W^{-1/2} \quad (3)$$
DANN

• x_0 - test point
• d_i - distance of x_i from x_0 according to metric Σ
 \[d_i = \| \Sigma^{1/2} (x_i - x_0) \| \]
 \[(4)\]
• h - size of the neighborhood
 \[h = \max_{i \in N_k(x_0)} d_i \]
 \[(5)\]
• assign a weight w_i to each point x_i around x_0 (depending on how far away it is in the neighborhood)
• Use tri-cubic function
 \[w_i = (1 - \left(\frac{d_i}{h} \right)^3)^3 \]
 \[(6)\]
Tri-cubic function
DANN

- We now have the weights w_i for each x_i.
- The weights depend on the distances (d_i), which depend on the metric (\sum).
- We can calculate B and W, taking the weights into account.

\[
B = \sum_{j=1}^{J} \alpha_j (\bar{x}_j - \bar{x})(\bar{x}_j - \bar{x})^T
\]

(7)

\[
\alpha_j = \frac{\sum_{y_j=j} w_i}{\sum_{i=1}^{N} w_i}
\]

(8)

\[
W = \sum_{j=1}^{J} \sum_{y_i=j} w_i (x_i - \bar{x}_j)(x_i - \bar{x}_j)^T / \sum_{i=1}^{N} w_i
\]

(9)

- \bar{x} - the center of all vectors in the neighborhood.
- \bar{x}_j - the center of all vectors belonging to class j.

• We started with a metric Σ and a neighborhood around x_0
• Now we have B and W
• But from (3):
 $$\Sigma = W^{-1/2}[W^{-1/2}BW^{-1/2} + \epsilon I]W^{-1/2}$$
(10)

• From Σ we obtain Σ'
• Iterative algorithm can be devised (see article for proof of convergence and more details)
Predicting y_0 for test vector x_0:

1. Initialize the metric $\Sigma = I$
2. Spread out a nearest neighborhood of K_M points around x_0, using the metric Σ
3. Calculate the weighted ’within-’ and ’between-’ sum-of-squares matrices W and B using the points in the neighborhood (using class information)
4. Calculate the new metric Σ from (10)
5. Iterate 2,3 and 4 until convergence
6. With the obtained Σ metric perform k NN classification around test point x_0
Choice of parameters

- K_M: number of nearest neighbors for estimating the metric
 - should be reasonably large, especially for high nr. of dimensions
 - $K_M = \max(N/5, 50)$
- K: number of nearest neighbors for final k NN rule
 - $K \ll K_M$
 - find using (cross-)validation
 - $K = 5$
- ϵ: 'softening' parameter in the metric
 - fixed value seems OK (see article)
 - $\epsilon > 0$
 - $\epsilon = 1$
Summary

- Nearest Neighbor and k Nearest Neighbor algorithms
 - Baseline methods for classification/regression
 - Have some weak points
 - Several variants exist
- Discriminant Adaptive NN Classification
 - Finds a new metric in a larger neighborhood of the test point
 - Uses class information in a way similar to LDA
 - Uses new metric to perform regular k NN
Sources

4. Sample images from:
 - Segaran: Programming Collective Intelligence (O'Reilly, 2007)
 - D’Silva: DANN presentation, www.lans.ece.utexas.edu/ srean/dann.ppt