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Decision trees

I There are objects in the world, they have many attributes.

I The attributes can take their values from a given set (type:
category, integer or real).

I A decision tree, using the attributes, gives a category for the
object (classification).

I Each non-leaf node of the tree is a test on an attribute,
having a child for each result of the test.

I For an incoming object, we shall first do the test in the root,
then follow the route down to the leaves.

I Each leaf is a category, if we reach one of them, then the
category of the object is the category belonging to that leaf.
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A simple example

Whether to play tennis or not. Attributes:

I outlook ∈ {sunny, overcast, rain}
I humidity ∈ {high, normal}
I windy ∈ {true, false}

A possible tree:
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Decision rules

A path from the root to a leaf: a decision rule.

if T1 ∧ T2 ∧ · · · ∧ Tn then Y = yi

Where Tj is a test on the j-th attribute (it may be ’always true’)
and yi is the i-th category.
The decision tree represents a consistent set of decision rules.
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Learning a decision tree 1

I Input: a training set of objects, whose class is known.

I Output: a decision tree, that can categorize any object
−→ induction

I Now, for simplicity, there will be only two classes (Positive
and Negative), and all the attributes are category type
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Learning a decision tree 2

I If there are two objects with identical attributes but different
categories, no correct tree exists

I There can be several trees that classify the entire training set
correctly

I Aim: construct the simplest tree

I We expect, that this classifies correctly more objects outside
the training set
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ID3

Recursive algorithm:

1. If all the training examples are from the same class, then let
this be a category node and RETURN. Otherwise:

2. If there are no more attributes left, then let this be a category
node using majority voting and RETURN. Otherwise:

3. Choose the ’best’ attribute for the current node

4. For each value of the attribute create a child node

5. Split the training set: assign each example to the
corresponding child node

6. For each node:

6.1 If the node is empty, then let it be a category node using
majority voting in the examples of it’s parents

6.2 If the node is not empty, then call this algorithm on it
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Choosing the best attribute 1

Which is the best attribute?

I We want the classes of examples in the child-nodes to be
homogeneous

I We assume, that the training set represents well the original
population:

Pr(C = Positive) =
p

p + n

Pr(C = Negative) =
n

p + n

where
I C is the class attribute
I p is the number of samples with positive class
I n is the number of samples with negative class
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Choosing the best attribute 2

Entropy:

I The expected number of bits, required to encode the class
labels as messages, drawn randomly from the samples (S)

H(S) = − p

p + n
log2

(
p

p + n

)
− n

p + n
log2

(
n

p + n

)
I The less entropy means less uncertainty → the more

homogeneous the sample is
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Choosing the best attribute 3

I Assume attribute A taking V different values

I {S1, . . . ,Sv} are the sample sets belonging to each value

I The average entropy of the sorted sample set is:

E (S ,A) =
v∑

i=1

|Si |
|S |

H(Si )

I The information gained by choosing A as branching attribute
is:

gain(A) = H(S)− E (S ,A)

I The best attribute: for which gain(A) is maximum, or (since
H(S) is the same for each attribute) E (S ,A) is minimum.
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A simple example

No Outlook Temperature Humidity Windy Class

1 sunny hot high false N
2 sunny hot high true N
3 overcoast hot high false P
4 rain mild high false P
5 rain cool normal false P
6 rain cool normal true N
7 overcast cool normal true P
8 sunny mild high false N
9 sunny cool normal false P
10 rain mild normal false P
11 sunny mild normal true P
12 overcast mild high true P
13 overcast hot normal false P
14 rain mild high true N
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Calculations

There are 9 positive and 5 negative examples (9 + 5 = 14).

H(S) = − 9

14
log

9

14
− 5

14
log

5

14
= 0.94

For the attribute ’Outlook’:

I sunny: 2 positive, 3 negative (2+3=5), H(Ssunny ) = 0.971

I overcast: 4 positive, 0 negative (4+0=4), H(Sovercast) = 0

I rain: 3 positive, 2 negative (3+2=5), H(Srain) = 0.971

E (S ,Outlook) =

5

14
H(Ssunny ) +

4

14
H(Sovercast) +

5

14
H(Srain) = 0.694
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Gain of attributes

The information gain of the ’Outlook’ attribute:

gain(outlook) = 0.940− 0.694 = 0.246

Similarly:
gain(temperature) = 0.029

gain(humidity) = 0.151

gain(windy) = 0.048

Result: ’Outlook’ is the best attribute for the root node
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Problem of irrelevant attributes

I There may be some attribute, that are irrelevant for the
decision

I In these cases, the information gain is small (although not 0)

I We can define a threshold for the gain (absolute or
percentage)

I If there is no attribute to exceed the threshold, we stop the
recursion

Adam Gyenge, HUT Decision trees, Spec. Course II 15/32



Problem with information gain

I A is an attribute with a set of possible values: {A1, . . . ,Av}
I Create a new attribute B by splitting one of the values into

two (eg. Av splits into Bv and Bv+1, proportion does not
matter)

I It can be shown, that gain(B) ≥ gain(A) always

I So ID3 prefers attributes with more values → builds flat trees

I It’s better to use the gain ratio as attribute selecting function

I IV (A) =
∑v

i=1
pi+ni
p+n log pi+ni

p+n

gain ratio(A) =
gain(A)

IV (A)
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Problem of overfitting

I The training data may contain noise

I We want to learn the general distribution, to reduce
classification error on any data

I Error of hypothesis h on training data: errortrain(h)

I Error of hypothesis h on entire distribution: errorD(h)

I Hypothesis h overfits the training data, if there is an
alternative hypothesis h′ ∈ H, for which

errortrain(h) < errortrain(h′)

but
errorD(h) > errorD(h′)
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Avoiding overfitting

Pruning:

I Prepruning: stop growing, when the data split is not
significant (covered earlier, problem of irrelevant attributes)

I Postpruning: grow full tree, and then substitute some subtrees
by single nodes. A few methods:

1. Reduced Error Pruning
2. Cost-Complexity Pruning
3. Pessimistic Pruning

I We usually split the input set into 3 parts

1. Training set: used for constructing the tree
2. Pruning set: independent from training set, used by some

pruning methods
3. Test set: estimation of accuracy on a real data
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Reduced Error Pruning

Algorithm:

1. Let S be a subtree in T

2. T’: S is substituted with the best leaf (majority voting in
training set)

3. E is the number of missclassified items of T on the pruning set

4. E’ is the number of missclassified items of T’ on the pruning
set

5. If E’ ≤ E, then prune S

6. Repeat this, until possible

What is the order of the nodes to consider?

I Bottom-up
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Example of REP

An example tree and pruning set:

Adam Gyenge, HUT Decision trees, Spec. Course II 20/32



Example of REP
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Cost-complexity pruning

Considers

I error on training set

I error on pruning set

I size of the tree

Tries to minimize error and complexity
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Notations

I T is a decision tree

I N is the size of the training set used for generating T

I L(T) is the number of leaves in T

I E is the number of missclassified training examples

I Cost-complexity (or total cost) = Error cost + Cost of
complexity

I CC (T ) = E
N + α · L(T )

I α is the cost of complexity per leaf
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CC Pruning

I S is a subtree of T, we substitute it with a single leaf by
majority voting beetwen its descendant leaves

I M = (the new number of misclassified training examples) - E

I The new tree has L(T )− L(S) + 1 leaves.

I If CC (Told) = CC (Tnew ), then

α =
M

N · (L(S)− 1)
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CC Pruning - Algorithm

Algorithm:

1. Compute α for each node,

2. Find the minimum, prune subtrees having this value

3. Repeat steps 1, 2 until one leaf is left, this gives a series of
trees: T0, . . . ,Tk

4. Standard error (N ′ is the size of the pruning set, and E ′ is the
smallest error of all the trees on the pruning set):

se =

√
E ′ · (N ′ − E ′)

N ′

5. Choose the smallest tree, whose observed error on the pruning
set does not exceeds E ′ + se (=not very far from the
minimum error)
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A medical example

I 4 categories: primary, secondary, compensated, negative

I The numbers of training examples, used for generating the
tree, are shown in parenthesis
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Example of CCP

Let’s consider the subtree of the node [T4U].

I There is only one example, which is not negative
I If we replace this subtree, with a leaf (of course with negative

label), then:
I M=1
I L(S)=4
I N=2018
I α = 1

2018·3 = 0.00013, this will be the least in the whole tree

I So at first, we shall replace this subtree by a leaf labelled as
negative
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Pessimistic Pruning

Notations again:

I N is the number of training examples

I K of them corresponds to a specific leaf

I J of them is missclassified, if we use a majority elected label
(J = K - number of majority examples)

I Estimation of error on the leaf: J
K

I A better one (with the continuity correction of binomial

distribution): J+1/2
K

I Expected error for K unseen samples: J + 1/2
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Pessimistic Pruning

If we think pessimisticly:

I S is a subtree, contains L(S) leaves

I
∑

J and
∑

K are the sums of J and K over these leaves

I Expected error on S for
∑

K unseen samples:
∑

J + L(S)/2

I Let E be the number of misclassified training examples, if we
substitute S by majority vote

I If E + 1/2 ≤ (
∑

J + L(S)/2) + se then prune S (se is the
standard error, as before)

Algorithm:

1. Top-down checking of nodes (all none-leaf nodes are
examined just once)

2. If possible, then substitute subtree with majority labelled leaf
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A medical example - revisited
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Example of PP

For the node [T4U]:

I
∑

K = 2018

I
∑

J = 0

I L(S) = 4

I Estimate of error on S = 0 + 4/2 = 2

I Standard error =
√

2·(2018−2)
2018 = 1.41

I Result of election: negative, E = 1

I 1 + 1/2 < 2.0 + 1.41⇒ substitute subtree of [T4U] with
[negative] leaf
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Summary

I Decision trees for classification

I ID3 uses entropy based information gain for selecting best
attribute to split on

I Problem of irrelevant attributes
I Overfitting can be avoided by postpruning

1. Reduced error pruning
2. Cost-complexity pruning
3. Pessimistic pruning

Thank you for your attention. Questions?
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