Decision trees Special Course in Computer and Information Science II

Adam Gyenge

Helsinki University of Technology

6.2.2008

Introduction

Outline:

- Definition of decision trees
- ► ID3
- Pruning methods

Bibliography:

- ► J. Ross Quinlan: Induction of Decision Trees. Machine Learning 1(1): 81-106 (1986)
- ► J. Ross Quinlan: Simplifying Decision Trees. International Journal of Man-Machine Studies 27(3): 221-234 (1987)
- ► T. Mitchell: Machine Learning. McGraw Hill (1997)

Decision trees

- ► There are objects in the world, they have many attributes.
- The attributes can take their values from a given set (type: category, integer or real).
- A decision tree, using the attributes, gives a category for the object (*classification*).
- Each non-leaf node of the tree is a test on an attribute, having a child for each result of the test.
- ► For an incoming object, we shall first do the test in the root, then follow the route down to the leaves.
- Each leaf is a category, if we reach one of them, then the category of the object is the category belonging to that leaf.

A simple example

Whether to play tennis or not. Attributes:

- outlook \in {sunny, overcast, rain}
- humidity \in {high, normal}
- windy \in {true, false}

A possible tree:

A path from the root to a leaf: a decision rule.

if
$$T_1 \wedge T_2 \wedge \cdots \wedge T_n$$
 then $Y = y_i$

Where T_j is a test on the *j*-th attribute (it may be 'always true') and y_i is the *i*-th category.

The decision tree represents a consistent set of decision rules.

Learning a decision tree 1

- Input: a training set of objects, whose class is known.
- Output: a decision tree, that can categorize any object
 induction
- Now, for simplicity, there will be only two classes (*Positive* and *Negative*), and all the attributes are category type

Learning a decision tree 2

- If there are two objects with identical attributes but different categories, no correct tree exists
- There can be several trees that classify the entire training set correctly
- Aim: construct the simplest tree
- We expect, that this classifies correctly more objects outside the training set

Recursive algorithm:

- 1. If all the training examples are from the same class, then let this be a category node and RETURN. Otherwise:
- 2. If there are no more attributes left, then let this be a category node using majority voting and RETURN. Otherwise:
- 3. Choose the 'best' attribute for the current node
- 4. For each value of the attribute create a child node
- 5. Split the training set: assign each example to the corresponding child node
- 6. For each node:
 - 6.1 If the node is empty, then let it be a category node using majority voting in the examples of it's parents
 - 6.2 If the node is not empty, then call this algorithm on it

Choosing the best attribute 1

Which is the best attribute?

- We want the classes of examples in the child-nodes to be homogeneous
- We assume, that the training set represents well the original population:

$$Pr(C = Positive) = rac{p}{p+n}$$

 $Pr(C = Negative) = rac{n}{p+n}$

where

- *C* is the class attribute
- p is the number of samples with positive class
- n is the number of samples with negative class

Choosing the best attribute 2

Entropy:

The expected number of bits, required to encode the class labels as messages, drawn randomly from the samples (S)

$$H(S) = -\frac{p}{p+n}\log_2\left(\frac{p}{p+n}\right) - \frac{n}{p+n}\log_2\left(\frac{n}{p+n}\right)$$

► The less entropy means less uncertainty → the more homogeneous the sample is

Choosing the best attribute 3

- Assume attribute A taking V different values
- ▶ $\{S_1, \ldots, S_\nu\}$ are the sample sets belonging to each value
- The average entropy of the sorted sample set is:

$$E(S,A) = \sum_{i=1}^{\nu} \frac{|S_i|}{|S|} H(S_i)$$

The information gained by choosing A as branching attribute is:

$$gain(A) = H(S) - E(S, A)$$

► The best attribute: for which gain(A) is maximum, or (since H(S) is the same for each attribute) E(S, A) is minimum.

A simple example

No	Outlook	Temperature	Humidity	Windy	Class
1	sunny	hot	high	false	Ν
2	sunny	hot	high	true	N
3	overcoast	hot	high	false	P
4	rain	mild	high	false	P
5	rain	cool	normal	false	Р
6	rain	cool	normal	true	N
7	overcast	cool	normal	true	Р
8	sunny	mild	high	false	N
9	sunny	cool	normal	false	Р
10	rain	mild	normal	false	Р
11	sunny	mild	normal	true	Р
12	overcast	mild	high	true	Р
13	overcast	hot	normal	false	Р
14	rain	mild	high	true	N

Calculations

There are 9 positive and 5 negative examples (9 + 5 = 14).

$$H(S) = -\frac{9}{14}\log\frac{9}{14} - \frac{5}{14}\log\frac{5}{14} = 0.94$$

For the attribute 'Outlook':

- ▶ sunny: 2 positive, 3 negative (2+3=5), $H(S_{sunny}) = 0.971$
- overcast: 4 positive, 0 negative (4+0=4), $H(S_{overcast}) = 0$

▶ rain: 3 positive, 2 negative (3+2=5), $H(S_{rain}) = 0.971$ E(S, Outlook) =

$$\frac{5}{14}H(S_{sunny}) + \frac{4}{14}H(S_{overcast}) + \frac{5}{14}H(S_{rain}) = 0.694$$

Gain of attributes

The information gain of the 'Outlook' attribute:

gain(outlook) = 0.940 - 0.694 = 0.246

Similarly:

gain(temperature) = 0.029gain(humidity) = 0.151gain(windy) = 0.048

Result: 'Outlook' is the best attribute for the root node

Problem of irrelevant attributes

- There may be some attribute, that are irrelevant for the decision
- ▶ In these cases, the information gain is small (although not 0)
- We can define a threshold for the gain (absolute or percentage)
- If there is no attribute to exceed the threshold, we stop the recursion

Problem with information gain

- A is an attribute with a set of possible values: $\{A_1, \ldots, A_v\}$
- Create a new attribute B by splitting one of the values into two (eg. A_v splits into B_v and B_{v+1}, proportion does not matter)
- It can be shown, that $gain(B) \ge gain(A)$ always
- So ID3 prefers attributes with more values \rightarrow builds flat trees
- It's better to use the gain ratio as attribute selecting function

•
$$IV(A) = \sum_{i=1}^{v} \frac{p_i + n_i}{p + n} \log \frac{p_i + n_i}{p + n}$$

gain ratio(A) =
$$\frac{gain(A)}{IV(A)}$$

Problem of overfitting

- The training data may contain noise
- We want to learn the general distribution, to reduce classification error on any data
- Error of hypothesis h on training data: error_{train}(h)
- Error of hypothesis h on entire distribution: error_D(h)
- ► Hypothesis *h* overfits the training data, if there is an alternative hypothesis *h*' ∈ *H*, for which

$$error_{train}(h) < error_{train}(h')$$

but

$$error_D(h) > error_D(h')$$

Avoiding overfitting

Pruning:

- Prepruning: stop growing, when the data split is not significant (covered earlier, problem of irrelevant attributes)
- Postpruning: grow full tree, and then substitute some subtrees by single nodes. A few methods:
 - 1. Reduced Error Pruning
 - 2. Cost-Complexity Pruning
 - 3. Pessimistic Pruning
- We usually split the input set into 3 parts
 - 1. Training set: used for constructing the tree
 - 2. Pruning set: independent from training set, used by some pruning methods
 - 3. Test set: estimation of accuracy on a real data

Reduced Error Pruning

Algorithm:

- 1. Let S be a subtree in T
- 2. T': S is substituted with the best leaf (majority voting in training set)
- 3. E is the number of missclassified items of T on the pruning set
- 4. E' is the number of missclassified items of T' on the pruning set
- 5. If E' \leq E, then prune S
- 6. Repeat this, until possible

What is the order of the nodes to consider?

Bottom-up

Example of REP

An example tree and pruning set:

Example of REP

Adam Gyenge, HUT

Decision trees, Spec. Course II

Cost-complexity pruning

Considers

- error on training set
- error on pruning set
- size of the tree

Tries to minimize error and complexity

Notations

- T is a decision tree
- N is the size of the training set used for generating T
- L(T) is the number of leaves in T
- E is the number of missclassified training examples
- Cost-complexity (or total cost) = Error cost + Cost of complexity

•
$$CC(T) = \frac{E}{N} + \alpha \cdot L(T)$$

 $\blacktriangleright \ \alpha$ is the cost of complexity per leaf

CC Pruning

- S is a subtree of T, we substitute it with a single leaf by majority voting beetwen its descendant leaves
- ▶ M = (the new number of misclassified training examples) E
- The new tree has L(T) L(S) + 1 leaves.
- If $CC(T_{old}) = CC(T_{new})$, then

$$\alpha = \frac{M}{N \cdot (L(S) - 1)}$$

CC Pruning - Algorithm

Algorithm:

- 1. Compute α for each node,
- 2. Find the minimum, prune subtrees having this value
- Repeat steps 1, 2 until one leaf is left, this gives a series of trees: T₀,..., T_k
- 4. Standard error (N' is the size of the *pruning* set, and E' is the smallest error of all the trees on the *pruning* set):

$$se = \sqrt{rac{E' \cdot (N' - E')}{N'}}$$

5. Choose the smallest tree, whose observed error on the pruning set does not exceeds E' + se (=not very far from the minimum error)

A medical example

- 4 categories: primary, secondary, compensated, negative
- The numbers of training examples, used for generating the tree, are shown in parenthesis

Adam Gyenge, HUT

Decision trees, Spec. Course II

Example of CCP

Let's consider the subtree of the node [T4U].

- ► There is only one example, which is not *negative*
- If we replace this subtree, with a leaf (of course with negative label), then:
 - ► M=1
 - ▶ L(S)=4
 - ► N=2018
 - $\alpha = \frac{1}{2018 \cdot 3} = 0.00013$, this will be the least in the whole tree
- So at first, we shall replace this subtree by a leaf labelled as negative

Pessimistic Pruning

Notations again:

- ► N is the number of *training* examples
- K of them corresponds to a specific leaf
- J of them is missclassified, if we use a majority elected label (J = K - number of majority examples)
- Estimation of error on the leaf: $\frac{J}{K}$
- A better one (with the continuity correction of binomial distribution): $\frac{J+1/2}{K}$
- Expected error for K unseen samples: J + 1/2

Pessimistic Pruning

If we think pessimisticly:

- ► S is a subtree, contains L(S) leaves
- $\sum J$ and $\sum K$ are the sums of J and K over these leaves
- Expected error on S for $\sum K$ unseen samples: $\sum J + L(S)/2$
- Let E be the number of misclassified training examples, if we substitute S by majority vote
- If E + 1/2 ≤ (∑ J + L(S)/2) + se then prune S (se is the standard error, as before)

Algorithm:

- 1. Top-down checking of nodes (all none-leaf nodes are examined just once)
- 2. If possible, then substitute subtree with majority labelled leaf

A medical example - revisited

Example of PP

For the node [T4U]:

- $\sum K = 2018$
- $\blacktriangleright \sum J = 0$
- ► *L*(*S*) = 4
- Estimate of error on S = 0 + 4/2 = 2
- Standard error = $\sqrt{\frac{2 \cdot (2018 2)}{2018}} = 1.41$
- Result of election: *negative*, E = 1
- ▶ $1 + 1/2 < 2.0 + 1.41 \Rightarrow$ substitute subtree of [T4U] with [negative] leaf

Summary

- Decision trees for classification
- ID3 uses entropy based information gain for selecting best attribute to split on
- Problem of irrelevant attributes
- Overfitting can be avoided by postpruning
 - 1. Reduced error pruning
 - 2. Cost-complexity pruning
 - 3. Pessimistic pruning

Thank you for your attention. Questions?