Popular algorithms in machine learning and data mining

gSpan
Graph Substructure Pattern Mining

Dušan Sovilj

Outline

• Introduction
• Graph reminders
• Depth First Search (DFS) codes and tree
• gSpan algorithm
Introduction

- Extending APriori algorithms for itemsets and sequences to graphs
 - candidate generation is costly
 - kernel of subgraph mining - *isomorphism test*
 - costly subgraph isomorphism test (NP-complete)
Introduction

• Formulate new labeling method for easier graph testing that allows sorting of all graphs: *DFS canonical label*

• Use depth first search on hierarchial structure for faster performace, instead of breath first search as in standard apriori algorithms
Graph basics

• gSpan works on labeled simple graphs

• Labeled graph \(G = (V, E, L, \ell) \)

\[
\begin{align*}
V & \quad \text{set of vertices} \\
E & \subseteq V \times V \quad \text{set of edges} \\
L & \quad \text{set of labels} \\
\ell & : V \cup E \to L \quad \text{labeling of vertices and edges}
\end{align*}
\]
Graph basics

• Definition: An isomorphism is a bijective function

\[f : V(G) \to V(H) \]
\[l_G(u) = l_H(f(u)) \quad \text{for } u \in V(G) \]
\[(f(u), f(v)) \in E(H) \]
\[l_G(u, v) = l_H(f(u), f(v)) \quad \text{for } (u, v) \in E(G) \]

• A subgraph isomorphism from \(G \) to \(H \) is an isomorphism from \(G \) to subgraph \(H \)
Goal

- Given dataset of graphs $GS=\{G_i \mid i=1..n\}$ and minimum support value, define

$$\zeta(g, G) = \begin{cases} 1 & \text{if graph } g \text{ is isomorphic to a subgraph of } G \\ 0 & \text{otherwise} \end{cases}$$

$$\sigma(g, GS) = \sum_{G_i \in GS} \zeta(g, G_i) \rightarrow \text{frequency of graph } g \text{ in } GS$$

- Frequent Subgraph Mining:
 - find graphs g in GS such that their frequency is greater of equal to minimum support
Idea outline

- Instead of searching graphs and testing for isomorphism we construct **canonical DFS codes**
- Each graph has a canonical DFS code and the codes are equivalent if the graphs are isomorphic
- The codes are based on DFS trees
DFS tree

- Mark vertices in the the order they are traversed
 \[v_i < v_j \text{ if } v_i \text{ is traversed before } v_j \]
 this constructs a DFS tree \(T \), denoted \(G_T \)

- DFS induces a linear order on vertices

- DFS divides edges in two sets
 - forward edge set: \((v_i, v_j)\) where \(v_i < v_j \)
 - backward edge set: \((v_i, v_j)\) where \(v_i > v_j \)

- There are huge number of DFS trees for single graph
DFS tree

Example graph with different traversals

bold line - forward edge

dashed line - backward edge
Linear orders

• A linear order of vertices defines a linear order of edges
 1. \((u, v) \prec_T (u, w)\) if \(v < w\)
 2. \((u, v) \prec_T (v, w)\) if \(u < v\)
 3. \(e_1 \prec_T e_2\) and \(e_2 \prec_T e_3\) implies \(e_1 \prec_T e_3\)

• Linear order of edges is DFS code
Linear orders

- Can be easily constructed

\{ (v_0, v_1), (v_1, v_2), (v_2, v_0), (v_2, v_3), (v_3, v_1), (v_1, v_4) \}
DFS codes

• DFS code is a sequence of 4-tuples containing an edge and three labels

• Assume that there is an order on the labels

• This order together with the edge order defines an order for any two 4-tuples

• This extends to DFS code using a lexicographic encoding
DFS codes

- DFS code can be expanded with vertex and edge labels

<table>
<thead>
<tr>
<th>edge</th>
<th>α</th>
<th>β</th>
<th>γ</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(0, 1, X, a, Y)</td>
<td>(0, 1, Y, a, X)</td>
<td>(0, 1, X, a, X)</td>
</tr>
<tr>
<td>1</td>
<td>(1, 2, Y, b, X)</td>
<td>(1, 2, X, a, X)</td>
<td>(1, 2, X, a, Y)</td>
</tr>
<tr>
<td>2</td>
<td>(2, 0, X, a, X)</td>
<td>(2, 0, X, b, Y)</td>
<td>(2, 0, Y, b, X)</td>
</tr>
<tr>
<td>3</td>
<td>(2, 3, X, c, Z)</td>
<td>(2, 3, X, c, Z)</td>
<td>(2, 3, Y, b, Z)</td>
</tr>
<tr>
<td>4</td>
<td>(3, 1, Z, b, Y)</td>
<td>(3, 0, Z, b, Y)</td>
<td>(3, 0, Z, c, X)</td>
</tr>
<tr>
<td>5</td>
<td>(1, 4, Y, d, Z)</td>
<td>(0, 4, Y, d, Z)</td>
<td>(2, 4, Y, d, Z)</td>
</tr>
</tbody>
</table>
Minimum DFS code

- Let the canonical DFS code to be the smallest code that can be constructed from G (denoted $\min(G)$)
- Theorem: Given two graphs G and H, they are isomorphic if and only if $\min(G)=\min(H)$
- Subgraph mining:
 - Mining frequent subgraphs is equivalent mining their corresponding minimum DFS codes
 - Can be done sequentially by pattern mining algorithms
DFS Code Tree

• Definition: DFS code's parent and child
 \[\alpha = (a_0, a_1, \ldots, a_m) \]
 \[\beta = (a_0, a_1, \ldots, a_m, b) \]

 \(\alpha \) is \(\beta \)'s parent and \(\beta \) is child of \(\alpha \)

• DFS Code Tree:
 - each node represents DFS code
 - relations between parents and children complies with previous definition
 - siblings are consistent with DFS lexicographic order
DFS Code Tree

• Properties:
 – With label set L, DFS Code Tree contains all possible graphs for this label set
 – Each graph on the n-th level in the DFS Code Tree contains $n-1$ edges
 – DFS code tree contains minimum DFS codes for all graphs (DFS Code Tree Covering)
DFS Code Tree

• Theorem (frequency antimonotone): If a graph G is frequent, then any subgraph of G is frequent. If G is not frequent, then any graph which contains G is not frequent.

OR

• If a DFS code α is frequent, then every ancestor of α is frequent. If α is not frequent then every descendant of α is not frequent.
DFS Code Tree

- Some graphs can have more DFS nodes corresponding to it in DFS Code Tree
- The first occurrence is the minimum DFS code
- Theorem: If DFS code is not the minimum one, we can prune the entire subtree below this node, and still preserve DFS Code Tree Covering
- Pre-order searching of DFS Code Tree guarantees that we can enumerate all potential frequent subgraphs
gSpan algorithm

GraphSet_projection(GS, FS)
 sort labels of the vertices and edges in GS by frequency;
 remove infrequent vertices and edges;
 relabel the remaining vertices and edges (descending);
 S[^1] := all frequent 1-edge graphs;
 sort S[^1] in DFS lexicographic order;
 FS := S[^1];
 for each edge e in S[^1] do
 init g with e, set g.DS = [h | h ∈ GS, e ∈ E(h)];
 Subgraph_mining(GS, FS, g);
 GS := GS - e;
 if |GS| < minSup
 break;
gSpan algorithm

Subgraph_mining(\(GS,FS,g\))
 if \(g \neq \text{min}(g)\)
 return;
 \(FS := FS \cup \{g\}\);
 enumerate \(g\) in each graph in \(GS\) and count \(g\)'s children;
 for each \(c\) (child of \(g\)) do
 if \(\text{support}(c) \geq \text{minSup}\)
 if \(\text{support}(c) \geq \text{minSup}\)
 Subgraph_mining(\(GS,FS,c\));

Enumeration of \(g\):
 Finding all exact positions of \(g\) in another graph
Last words

- No candidate generation
 - frequent \((k+1)\)-edge subgraphs are grown from frequent \(k\)-edge graphs

- Depth First Search of DFS Code Tree
 - saving space

- Beats earlier algorithms by quite a margin

- Easily extendable to other domains (sequences, trees, lattices)
References

- X. Yan and J. Han. gSpan: Graph-based substructure pattern mining. Technical report, 2002.