

gSpan
Graph Substructure Pattern Mining

Dušan Sovilj

16.04.2008.

Popular algorithms in machine learning and data mining

Outline
● Introduction
● Graph reminders
● Depth First Search (DFS) codes and tree
● gSpan algorithm

Introduction
● Extending APriori algorithms for itemsets and

sequences to graphs
– candidate generation is costly
– kernel of subgraph mining - isomophism test
– costly subgraph isomorphism test (NP-complete)

Introduction
● Formulate new labeling method for easier graph

testing that allows sorting of all graphs: DFS canonical
label

● Use depth first search on hierarchial structure for
faster performace, instead of breath first search as in
standard apriori algorithms

Graph basics
● gSpan works on labeled simple graphs
● Labeled graph G = (V, E, L, l)

V set of vertices
E⊆V ×V set of edges
L set of labels
l :V∪E L labeling of vertices and edges

Graph basics
● Definition: An isomorphism is a bijective function

● A subgraph isomorphism from G to H is an
isomorphism from G to subgraph H

f :V GV H
lG u=l H f u for u∈V G
 f u , f v∈E H
lG u , v =l H f u , f v} for u ,v ∈E G

Goal

● Given dataset of graphs GS={Gi | i=1..n} and minimum
support value, define

● Frequent Subgraph Mining:
– find graphs g in GS such that their frequency is

greater of equal to minimum support

g ,G ={1 if graph g is isomorphic to a subgraph of G
0 otherwise

g ,GS = ∑
G i∈GS

g ,G i frequency of graph g in GS

Idea outline
● Instead of searching graphs and testing for

isomorphism we construct canonical DFS codes
● Each graph has a canonical DFS code and the codes

are equivalent if the graphs are isomorphic
● The codes are based on DFS trees

DFS tree
● Mark vertices in the the order they are traversed

vi < vj if vi is traversed before vj

 this constructs a DFS tree T, denoted GT

● DFS induces a linear order on vertices
● DFS divides edges in two sets

– forward edge set: (vi, vj) where vi < vj

– backward edge set: (vi, vj) where vi > vj

● There are huge number of DFS trees for single graph

DFS tree

Example graph with different traversals

bold line - forward edge

dashed line - backward edge

Linear orders
● A linear order of vertices defines a linear order of

edges
1. (u, v) <T (u, w) if v < w

2. (u, v) <T (v, w) if u < v

3. e1 <T e2 and e2 <T e3 implies e1 <T e3

● Linear order of edges is DFS code

Linear orders
● Can be easily constructed

{ (v0,v1), (v1,v2), (v2,v0), (v2,v3), (v3,v1), (v1,v4) }

DFS codes
● DFS code is a sequence of 4-tuples containing an

edge and three labels
● Assume that there is an order on the labels
● This order together with the edge order defines an

order for any two 4-tuples
● This extends to DFS code using a lexicographic

encoding

DFS codes
● DFS code can be expanded with vertex and edge

labels

edge α β γ
0 (0, 1, X, a, Y) (0, 1, Y, a, X) (0, 1, X, a, X)
1 (1, 2, Y, b, X) (1, 2, X, a, X) (1, 2, X, a, Y)
2 (2, 0, X, a, X) (2, 0, X, b, Y) (2, 0, Y, b, X)
3 (2, 3, X, c, Z) (2, 3, X, c, Z) (2, 3, Y, b, Z)
4 (3, 1, Z, b, Y) (3, 0, Z, b, Y) (3, 0, Z, c, X)
5 (1, 4, Y, d, Z) (0, 4, Y, d, Z) (2, 4, Y, d, Z)

Minimum DFS code
● Let the canonical DFS code to be the smallest code

that can be constructed from G (denoted min(G))
● Theorem: Given two graphs G and H, they are

isomorphic if and only if min(G)=min(H)
● Subgraph mining:

– Mining frequent subgraphs is equivalent mining
their corresponding minimum DFS codes

– Can be done sequentally by pattern mining
algorithms

DFS Code Tree
● Definition: DFS code's parent and child

 α is β's parent and β is child of α
● DFS Code Tree:

– each node represents DFS code
– relations between parents and children complies

with previous definition
– siblings are consistent with DFS lexicographic order

=a0 , a1 , .. , am

=a0 ,a1 , .. ,am ,b

DFS Code Tree
● Properties:

– With label set L, DFS Code Tree contains all
possible graphs for this label set

– Each graph on the n-th level in the DFS Code Tree
contrains n-1 edges

– DFS code tree contains minimum DFS codes for all
grahps (DFS Code Tree Covering)

DFS Code Tree
● Theorem (frequency antimonotone): If a graph G is

frequent, then any subgraph of G is frequent. If G is
not frequent, then any graph which contains G is not
frequent.

OR

● If a DFS code α is frequent, then every ancestor of α is
frequent. If α is not frequent then every descendant of
α is not frequent.

DFS Code Tree
● Some graphs can have more DFS nodes

corresponding to it in DFS Code Tree
● The first occurence is the minimum DFS code
● Theorem: If DFS code is not the minimum one, we can

prune the entire subtree below this node, and still
preserve DFS Code Tree Covering

● Pre-order searching of DFS Code Tree guarantees
that we can enumerate all potential frequent
subgraphs

gSpan algorithm
GraphSet_projection(GS,FS)

sort labels of the vertices and edges in GS by frequency;
remove infrequent vertices and edges;
relabel the remaining vertices and edges (descending);
S1 := all frequent 1-edge graphs;
sort S1 in DFS lexicographic order;
FS := S1;

for each edge e in S1 do
init g with e, set
Subgraph_mining(GS,FS,g);
GS := GS - e;
if |GS| < minSup

break;

g.DS={h | h∈GS , e∈Eh};

gSpan algorithm
Subgraph_mining(GS,FS,g)

if g ≠ min(g)
return;

FS := FS U {g};
enumerate g in each graph in GS and count g's children;
for each c (child of g) do

if support(c) ≥ minSup
Subgraph_mining(GS,FS,c);

Enumeration of g:
Finding all exact positions of g in another graph

Last words
● No candidate generation

– frequent (k+1)-edge subgraphs are grown from
frequent k-edge graphs

● Depth First Search of DFS Code Tree
– saving space

● Beats ealier algorithms by quite a margin
● Easily extendable to other domains (sequences, trees,

lattices)

References
● X. Yan and J.Han. gSpan: Graph-based substructure

pattern mining. Technical report, 2002.

