Popular algorithms in machine learning and data mining

gSpan Graph Substructure Pattern Mining

Dušan Sovilj

16.04.2008.

Outline

- Introduction
- Graph reminders
- Depth First Search (DFS) codes and tree
- gSpan algorithm

Introduction

- Extending APriori algorithms for itemsets and sequences to graphs
 - candidate generation is costly
 - kernel of subgraph mining isomophism test
 - costly subgraph isomorphism test (NP-complete)

Introduction

- Formulate new labeling method for easier graph testing that allows sorting of all graphs: DFS canonical label
- Use depth first search on hierarchial structure for faster performace, instead of breath first search as in standard apriori algorithms

Graph basics

- gSpan works on labeled simple graphs
- Labeled graph $G = (V, E, L, \ell)$

Vset of vertices $E \subseteq V \times V$ set of edgesLset of labels $\ell: V \cup E \to L$ labeling of vertices and edges

Graph basics

• Definition: An isomorphism is a bijective function

 $\begin{aligned} f: V(G) \to V(H) \\ l_G(u) = l_H(f(u)) & \text{for } u \in V(G) \\ (f(u), f(v)) \in E(H) \\ l_G(u, v) = l_H(f(u), f(v)) \end{aligned}$ for $(u, v) \in E(G)$

• A subgraph isomorphism from *G* to *H* is an isomorphism from *G* to subgraph *H*

Goal

Given dataset of graphs GS={G_i | i=1..n} and minimum support value, define

 $\zeta(g,G) = \begin{cases} 1 & \text{if graph } g \text{ is isomorphic to a subgraph of } G \\ 0 & \text{otherwise} \end{cases}$

 $\sigma(g, GS) = \sum_{G_i \in GS} \zeta(g, G_i) \rightarrow \text{frequency of graph } g \text{ in } GS$

- Frequent Subgraph Mining:
 - find graphs g in GS such that their frequency is greater of equal to minimum support

Idea outline

- Instead of searching graphs and testing for isomorphism we construct canonical DFS codes
- Each graph has a canonical DFS code and the codes are equivalent if the graphs are isomorphic
- The codes are based on DFS trees

DFS tree

- Mark vertices in the the order they are traversed
 ν_i < ν_j if ν_i is traversed before ν_j
 this constructs a DFS tree *T*, denoted *G*_T
- DFS induces a linear order on vertices
- DFS divides edges in two sets
 - forward edge set: (v_i, v_j) where $v_i < v_j$
 - backward edge set: (v_i, v_j) where $v_i > v_j$
- There are huge number of DFS trees for single graph

DFS tree

Example graph with different traversals

bold line - forward edge

dashed line - backward edge

Linear orders

- A linear order of vertices defines a linear order of edges
 - 1. $(u, v) <_T (u, w)$ if v < w
 - 2. $(u, v) <_T (v, w)$ if u < v
 - 3. $e_1 < e_2$ and $e_2 < e_3$ implies $e_1 < e_3$
- Linear order of edges is **DFS code**

Linear orders

• Can be easily constructed

$$\{(v_0, v_1), (v_1, v_2), (v_2, v_0), (v_2, v_3), (v_3, v_1), (v_1, v_4)\}$$

DFS codes

- DFS code is a sequence of 4-tuples containing an edge and three labels
- Assume that there is an order on the labels
- This order together with the edge order defines an order for any two 4-tuples
- This extends to DFS code using a lexicographic encoding

DFS codes

 DFS code can be expanded with vertex and edge labels

_	edge	α	β	γ
_	0	(0, 1, X, a, Y)	(0, 1, Y, a, X)	(0, 1, X, a, X)
	1	(1, 2, Y, b, X)	(1, 2, X, a, X)	(1, 2, X, a, Y)
	2	(2, 0, X, a, X)	(2, 0, X, b, Y)	(2, 0, Y, b, X)
	3	(2, 3, X, c, Z)	(2, 3, X, c, Z)	(2, 3, Y, b, Z)
	4	(3, 1, Z, b, Y)	(3, 0, Z, b, Y)	(3, 0, Z, c, X)
	5	(1, 4, Y, d, Z)	(0, 4, Y, d, Z)	(2, 4, Y, d, Z)

Minimum DFS code

- Let the canonical DFS code to be the smallest code that can be constructed from *G* (denoted *min*(*G*))
- Theorem: Given two graphs *G* and *H*, they are isomorphic if and only if min(G)=min(H)
- Subgraph mining:
 - Mining frequent subgraphs is equivalent mining their corresponding minimum DFS codes
 - Can be done sequentally by pattern mining algorithms

• Definition: DFS code's parent and child

 $\boldsymbol{\alpha} = (a_0, a_1, \dots, a_m)$ $\boldsymbol{\beta} = (a_0, a_1, \dots, a_m, \boldsymbol{b})$

 α is β 's parent and β is child of α

- DFS Code Tree:
 - each node represents DFS code
 - relations between parents and children complies with previous definition
 - siblings are consistent with DFS lexicographic order

- Properties:
 - With label set *L*, DFS Code Tree contains all possible graphs for this label set
 - Each graph on the *n*-th level in the DFS Code Tree contrains *n*-1 edges
 - DFS code tree contains minimum DFS codes for all grahps (DFS Code Tree Covering)

• Theorem (frequency antimonotone): If a graph *G* is frequent, then any subgraph of *G* is frequent. If *G* is not frequent, then any graph which contains *G* is not frequent.

OR

If a DFS code α is frequent, then every ancestor of α is frequent. If α is not frequent then every descendant of α is not frequent.

- Some graphs can have more DFS nodes corresponding to it in DFS Code Tree
- The first occurence is the minimum DFS code
- Theorem: If DFS code is not the minimum one, we can prune the entire subtree below this node, and still preserve DFS Code Tree Covering
- Pre-order searching of DFS Code Tree guarantees that we can enumerate all potential frequent subgraphs

gSpan algorithm

GraphSet_projection(GS,FS)

sort labels of the vertices and edges in GS by frequency; remove infrequent vertices and edges; relabel the remaining vertices and edges (descending); $S^{l} :=$ all frequent 1-edge graphs; sort S^{I} in DFS lexicographic order; $FS := S^{I;}$ for each edge e in S^{I} do init g with e, set g. $DS = \{h | h \in GS, e \in E(h)\};$ Subgraph mining(GS,FS,g); GS := GS - e;if $|GS| < \min Sup$ break;

gSpan algorithm

```
Subgraph_mining(GS,FS,g)

if g \neq min(g)

return;

FS := FS \cup \{g\};

enumerate g in each graph in GS and count g's children;

for each c (child of g) do

if support(c) \geq minSup

Subgraph_mining(GS,FS,c);
```

Enumeration of g:

Finding all exact positions of g in another graph

Last words

- No candidate generation
 - frequent (k+1)-edge subgraphs are grown from frequent k-edge graphs
- Depth First Search of DFS Code Tree
 - saving space
- Beats ealier algorithms by quite a margin
- Easily extendable to other domains (sequences, trees, lattices)

References

• X. Yan and J.Han. gSpan: Graph-based substructure pattern mining. Technical report, 2002.