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Bayes vs. maximum likelihood

• Model: what we are observing (data generating process)

• Likelihood: model applied to specific data

• Prior distribution: before-the-fact beliefs of different outcomes

• Posterior distribution: after-the-fact distribution of model parameters

• Maximum likelihood: point estimate of parameters, ignoring prior and 
posterior

• Maximum likelihood Bayesian

Model,
Likelihood

Posterior

Prior

Scaling term Z

6=

θ̂ = argmaxθ p(x|θ)

Point estimate

p(θ|x) = p(x|θ)p(θ)
p(x)
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Example: flipping two coins
z1 z2

0 1
0 1
1 0

1 0

0 1

1 0

0 1
0 1
1 0
0 1
1 0
1 0
0 1
1 0

Which coin 
was flipped 
(unknown)

• Flipped coin is picked randomly with 
probability p(zk = 1) = πk
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Example: flipping two coins
z1 z2 x
0 1 1
0 1 0
1 0 0

1 0 1

0 1 1

1 0 0

0 1 0
0 1 1
1 0 0
0 1 0
1 0 1
1 0 0
0 1 1
1 0 0

Outcome 
(heads or tails)

• Two coins with unknown probabilities     
and      of landing heads

• Flipped coin is picked randomly with 
probability

θ1
θ2

p(x|z1, z2, θ1, θ2) = B(x|θ1)z1B(x|θ2)z2
B(x|θ) = θx(1− θ)1−x

p(zk = 1) = πk
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Example: flipping two coins
z1 z2 x
0 1 1
0 1 0
1 0 0

1 0 1

0 1 1

1 0 0

0 1 0
0 1 1
1 0 0
0 1 0
1 0 1
1 0 0
0 1 1
1 0 0

• Two coins with unknown probabilities     
and      of landing heads

• Flipped coin is picked randomly with 
probability

θ1
θ2

p(x|z1, z2, θ1, θ2) = B(x|θ1)z1B(x|θ2)z2
B(x|θ) = θx(1− θ)1−x

p(zk = 1) = πk

Problem: since each flipped coin zik is hidden, how 
can we learn anything from just the observations xi?

Solution: estimate the responsibility γ(zik) of each 
coin pick zik for each observation xi:

γ(zk) ≡ p(zk = 1|x,π1,π2, θ1, θ2)

=
p(x|zk = 1, θk)p(zk = 1|πk)

p(x|π, θ)

=
πkB(x|θk)P
j πjB(x|θj)
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Example: flipping two coins
• Two coins with unknown probabilities     

and      of landing heads

• Flipped coin is picked randomly with 
probability

• Unknowns:
• Which coin was flipped for each i?

• What were the parameters?

z1 z2 x γ(z1) γ(z2)
0 1 1 0.2 0.8
0 1 0 0.4 0.6
1 0 0 0.9 0.1

1 0 1 0.6 0.4

0 1 1 0.2 0.8

1 0 0 0.8 0.2

0 1 0 0.3 0.7
0 1 1 0.2 0.8
1 0 0 0.7 0.3
0 1 0 0.4 0.6
1 0 1 0.7 0.3
1 0 0 0.6 0.4
0 1 1 0.3 0.7
1 0 0 0.7 0.3

Responsibility 
(estimate)

θ1
θ2

p(x|z1, z2, θ1, θ2) = B(x|θ1)z1B(x|θ2)z2
B(x|θ) = θx(1− θ)1−x

p(zk = 1) = πk

γ(zk) ≡ p(zk = 1|x,π1,π2, θ1, θ2) =
πkB(x|θk)P
j πjB(x|θj)

π̂k =
1

N

X
i

γ(zik), θ̂k =

P
i γ(zik)xiP
i γ(zik)
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Example: flipping two coins
• Two coins with unknown probabilities     

and      of landing heads

• Flipped coin is picked randomly with 
probability

• Unknowns:
• Which coin was flipped for each i?

• What were the parameters?

z1 z2 x γ(z1) γ(z2)
0 1 1 0.2 0.8
0 1 0 0.4 0.6
1 0 0 0.9 0.1

1 0 1 0.6 0.4

0 1 1 0.2 0.8

1 0 0 0.8 0.2

0 1 0 0.3 0.7
0 1 1 0.2 0.8
1 0 0 0.7 0.3
0 1 0 0.4 0.6
1 0 1 0.7 0.3
1 0 0 0.6 0.4
0 1 1 0.3 0.7
1 0 0 0.7 0.3

θ1
θ2

p(x|z1, z2, θ1, θ2) = B(x|θ1)z1B(x|θ2)z2
B(x|θ) = θx(1− θ)1−x

p(zk = 1) = πk

γ(zk) ≡ p(zk = 1|x,π1,π2, θ1, θ2) =
πkB(x|θk)P
j πjB(x|θj)

π̂k =
1

N

X
i

γ(zik), θ̂k =

P
i γ(zik)xiP
i γ(zik)

E s
te

p

M
 st

ep



8       © 2006 Nokia 2008-02-27 / JS

T-61.6020 Popular Algorithms in Data Mining and Machine Learning, TKK

Expectation maximization

• The EM algorithm is used to solve maximum likelihood problems in general

• Applies when the likelihood has unknown hidden (latent) variables

• Latent variables are model assumptions

• Mixture problems can be stated using discrete latent variables

• Hidden Markov model state is a discrete latent variable

• Kalman filter state is a continuous latent variable

• EM not tied to mixture problems however

• Any kind of probabilistic model with unknown variables

• EM for Hidden Markov models is also known as Baum-Welch or forward-backward 
recursion

• Very widely used
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Expectation maximization

• EM finds local likelihood maxima by iterative optimization

• Alternating between E step and M step until convergence

• E step: compute expected values of hidden variables, given parameters

• M step: re-estimate parameters, given values for hidden variables 

• Analogous to k-means

• Not guaranteed to find global likelihood maximum
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Mixtures of Gaussians

• Multivariate Gaussian (normal) distribution parametrized by mean
vector and covariance matrix

• Gaussian mixture model is a linear combination of K Gaussian densities

• Component weights or mixing coefficients

• Component means

• Component covariances

• Model parameters

μ Σ
N (x|μ,Σ)

μk
Σk

πk

θ = {π1, . . . ,πK ,μ1, . . . ,μK ,Σ1, . . . ,ΣK}

p(x|θ) =
KX
k=1

πkN (x|μk,Σk)
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Covariance structures
• Covariance matrix structure can be controlled
• Full covariance matrices

• Unrestricted covariance (symmetric)
• Rotated ellipsoid shape
• parameters

• Diagonal covariance
• Zeros except on diagonal
• Ellipsoid shape
• D parameters

• Scaled identity covariance
• Zeros except on diagonal
• Diagonal values are equal
• Spherical shape
• One parameter

Σ = λI

Σij = 0, i 6= j
(D + 1)D/2
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Gaussian mixture likelihood

• Log-likelihood of Gaussian mixture

• Maximum likelihood

• Has no closed-form solution

log p(x|θ) =
NX
n=1

log

(
KX
k=1

πkN (xn|μk,Σk)
)

θ̂ = argmaxθ log p(x|θ)
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Latent variable formulation of Gaussian mixtures

• To apply EM, we introduce latent K-dimensional 
indicator variable z to Gaussian mixtures

• iff kth component is active

• otherwise

• Then                                and 

• Marginalizing over z,

• Therefore, we obtain the same Gaussian mixture 
density as earlier

z

x

zk = 1

zk = 0

p(x|z,θ) =
KY
k=1

N (x|μk,Σk)zkp(z|θ) =
KY
k=1

πzkk

p(x|θ) =
X
z

p(z|θ)p(x|z,θ) =
KX
k=1

πkN (x|μk,Σk)

Factorization

p(x,z) = p(z)p(x|z)
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EM for Gaussian mixtures

• Complete-data log likelihood

• Responsibilities

log p(x,z|θ) = log
NY
n=1

KY
k=1

πznkk N (xn|μk,Σk)znk

=
X
n

X
k

znk[log πk + log N (xn|μk,Σk)]

γ(zk) ≡ p(zk = 1|x,θ) =
πkN (x|μk,Σk)P
j πjN (x|μj ,Σj)
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EM algorithm for Gaussian mixtures

E step
• Evaluate responsibilities, given current parameters

M step
• Re-estimate parameters, given current responsibilities

πk =
1

N

NX
n=1

γ(znk)

μk =

P
n γ(znk)xnP
n γ(znk)

Σk =

P
n γ(znk)(xn − μk)(xn − μk)>P

n γ(znk)

γ(znk) =
πkN (xn|μk,Σk)PK
j πjN (xn|μj ,Σj)
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EM algorithm for Gaussian mixtures

E step
• Evaluate responsibilities, given current parameters

M step
• Re-estimate parameters, given current responsibilities

πk =
1

N

NX
n=1

γ(znk)

μk =

P
n γ(znk)xnP
n γ(znk)

Σk =

P
n γ(znk)(xn − μk)(xn − μk)>P

n γ(znk)

γ(znk) =
πkN (xn|μk,Σk)PK
j πjN (xn|μj ,Σj)Mean 

responsibility
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EM algorithm for Gaussian mixtures

E step
• Evaluate responsibilities, given current parameters

M step
• Re-estimate parameters, given current responsibilities

πk =
1

N

NX
n=1

γ(znk)

μk =

P
n γ(znk)xnP
n γ(znk)

Σk =

P
n γ(znk)(xn − μk)(xn − μk)>P

n γ(znk)

γ(znk) =
πkN (xn|μk,Σk)PK
j πjN (xn|μj ,Σj)Mean 

responsibility

Weighted mean 
of observations 
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EM algorithm for Gaussian mixtures

E step
• Evaluate responsibilities, given current parameters

M step
• Re-estimate parameters, given current responsibilities

πk =
1

N

NX
n=1

γ(znk)

μk =

P
n γ(znk)xnP
n γ(znk)

Σk =

P
n γ(znk)(xn − μk)(xn − μk)>P

n γ(znk)

γ(znk) =
πkN (xn|μk,Σk)PK
j πjN (xn|μj ,Σj)Mean 

responsibility

Weighted mean 
of observations 

Weighted mean 
of variances 
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Demo: mixture of three Gaussians

• Two-dimensional data

• Find max likelihood estimate for means of a mixture of k=3 Gaussians
•

• E step
• Show responsibilities in color

• Red, green, blue color corresponding to each of three components

• M step
• Show Gaussian mixture density in color

Σ = I



20       © 2006 Nokia 2008-02-27 / JS

T-61.6020 Popular Algorithms in Data Mining and Machine Learning, TKK

Demo
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Demo
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Demo
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Demo
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Demo
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Demo
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Demo
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Demo
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Demo



29       © 2006 Nokia 2008-02-27 / JS

T-61.6020 Popular Algorithms in Data Mining and Machine Learning, TKK

Demo
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Demo
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Demo
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General EM problem

• How to find maximum likelihood estimates of latent variables in a probabilistic
model?

• Assumptions
• Latent variables are random variables

• Complete-data likelihood is known

• Complete-data likelihood expectation can be maximized

• Requirements
• Observed data

• Complete-data likelihood

• Initial parameters

• EM is not a single algorithm, but a recipe of an algorithm
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• Given
• Observed data 
• Complete-data likelihood
• Initial parameters

• E step
• Compute expected value of complete-data log likelihood                           over hidden 

variables z, given parameters

• Assuming z is a random variable, 

• M step
• Re-estimate parameters         , given values for hidden variables

• Repeat E and M steps until convergence (and restart with random parameters)

General EM solution

p(x,z|θ)
x1,x2, . . . ,xN

Conditional expectation

θold

z ∼ p(z|x,θold)

θold

Ex[f(x)|y] =
R
f(x)p(x|y)dx

Q(θ,θold) = Ez[log p(x, z|θ) |x,θold] =
X
z

p(z|x,θold) log p(x,z|θ)

θnew Q(θ,θold)

log p(x, z|θ)

θnew = argmaxθ Q(θ,θ
old)
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General EM algorithm properties
• Convergence to local maximum guaranteed

• Each iteration can only increase the observed data likelihood
• Not necessarily global maximum likelihood

• Benefits
• Applicable to a wide variety of problems (latent probabilistic models)
• Faster than Monte Carlo simulations

• Drawbacks
• Maximum likelihood point estimates are often misleading, e.g., Gaussian

singularities
• Not strictly maximum likelihood (local maxima) 
• Slow convergence for big data

• Bayesian alternatives
• Monte Carlo simulation
• Variational approximation
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Summary

• Expectation maximization is an algorithm recipe for solving maximum 
likelihood problems having latent variables

• Algorithm recipe: family of related algorithms, not a single algorithm

• Maximum likelihood: point estimate, not fully Bayesian

• Latent variables: estimate arbitrary hidden parameters, not only Gaussian mixtures

• EM algorithm is iterative and converges to local likelihood maxima

• Full Bayesian alternatives are often computationally heavier
• Monte Carlo, etc.

• EM for Gaussian mixtures
• Estimate mixture weights, means, and covariances, given observations

• Soft version of k-means

• How to choose k?
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