Maximum likelihood Gaussian mixtures using expectation maximization

NOKIA

Jarno Seppänen 2008-02-27

T-61.6020 Popular Algorithms in Data Mining and Machine Learning, TKK

Bayes vs. maximum likelihood

- **Model**: what we are observing (data generating process)
- Likelihood: model applied to specific data
- **Prior distribution**: before-the-fact beliefs of different outcomes
- **Posterior distribution**: after-the-fact distribution of model parameters
- Maximum likelihood: point estimate of parameters, ignoring prior and posterior
- Maximum likelihood \neq Bayesian

Example: flipping two coins

• Flipped coin is picked randomly with probability $p(z_k=1)=\pi_k$

Example: flipping two coins

• Two coins with unknown probabilities θ_1 and θ_2 of landing heads $p(x|z_1, z_2, \theta_1, \theta_2) = B(x|\theta_1)^{z_1}B(x|\theta_2)^{z_2}$

 $B(x|\theta) = \theta^x (1-\theta)^{1-x}$

• Flipped coin is picked randomly with probability $p(z_k=1)=\pi_k$

Outcome (heads or tails)

Z ₁	Z ₂	X
0	1	1
0	1	0
1	0	0
1	0	1
0	1	1
1	0	0
0	1	0
0	1	1
1	0	0
0	1	0
1	0	1
1	0	0
0	1	1
1	0	0

2008-02-27 / IS

© 2006 Nokia

4

Example dinning two coinc

• Two and p(**Problem:** since each flipped coin z_{ik} is hidden, how can we learn anything from just the observations x_i ?

• Flip pro **Solution:** estimate the responsibility $\gamma(z_{ik})$ of each coin pick z_{ik} for each observation x_i :

$$\begin{split} \gamma(z_k) &\equiv p(z_k = 1 | x, \pi_1, \pi_2, \theta_1, \theta_2) \\ &= \frac{p(x | z_k = 1, \theta_k) p(z_k = 1 | \pi_k)}{p(x | \pi, \theta)} \\ &= \frac{\pi_k \mathbf{B}(x | \theta_k)}{\sum_j \pi_j \mathbf{B}(x | \theta_j)} \end{split}$$

T-61.6020 Popular Algorithms in Data Mining and Machine Learning, TKK

Ω

()

Example: flipping two coins

- Two coins with unknown probabilities θ_1 and θ_2 of landing heads $p(x|z_1, z_2, \theta_1, \theta_2) = B(x|\theta_1)^{z_1}B(x|\theta_2)^{z_2}$ $B(x|\theta) = \theta^x (1-\theta)^{1-x}$
- Flipped coin is picked randomly with probability $p(z_k=1)=\pi_k$
- Unknowns:

© 2006 Nokia

6

• Which coin was flipped for each *i*?

$$\gamma(z_k) \equiv p(z_k = 1 | x, \pi_1, \pi_2, \theta_1, \theta_2) = \frac{\pi_k \mathbf{B}(x | \theta_k)}{\sum_j \pi_j \mathbf{B}(x | \theta_j)}$$

• What were the parameters?

2008-02-27 / IS

$$\hat{\pi}_k = \frac{1}{N} \sum_i \gamma(z_{ik}), \ \hat{\theta}_k = \frac{\sum_i \gamma(z_{ik}) x_i}{\sum_i \gamma(z_{ik})}$$

Responsibility (estimate)

Z ₁	Z ₂	X	y(z ₁)	γ(z ₂)
0	1	1	0.2	0.8
0	1	0	0.4	0.6
1	0	0	0.9	0.1
1	0	1	0.6	0.4
0	1	1	0.2	0.8
1	0	0	0.8	0.2
0	1	0	0.3	0.7
0	1	1	0.2	0.8
1	0	0	0.7	0.3
0	1	0	0.4	0.6
1	0	1	0.7	0.3
1	0	0	0.6	0.4
0	1	1	0.3	0.7
1	0	0	0.7	0.3

Example: flipping two coins

- Two coins with unknown probabilities $ heta_1$				
and $ heta_2$ of landing heads				
$p(x z_1, z_2, \theta_1, \theta_2) = \mathbf{B}(x \theta_1)^{z_1} \mathbf{B}(x \theta_2)^{z_2}$				
$\mathcal{B}(x \theta) = \theta^x (1-\theta)^{1-x}$				
 Flipped coin is picked randomly with 				
probability $p(z_k - 1) = \pi_k$				
• Unknow				
• V ch <i>i</i> ?				
$\gamma(z_k) = 1 x, \pi_1, \pi_2, \theta_1, \theta_1) = \frac{\pi_k \mathbf{B}(x \theta_k)}{\sum_j \pi_j \mathbf{B}(x \theta_j)}$				
the the newspectary				
• The the parameters				
$\hat{\pi}_{k} = \frac{1}{N} \sum_{i=1}^{N} \hat{\theta}_{k} = \frac{\sum_{i=1}^{N} \hat{\theta}_{k}}{\sum_{i=1}^{N} \hat{\theta}_{k}} \frac{r_{i}}{r_{i}}$				
T-61.6020 Population TKK				
7 © 2006 Nokia 2008-02-2				

Z ₁	Z 2	X	γ(z ₁)	γ(z ₂)
0	1	1	0.2	0.8
0	1	0	0.4	0.6
1	0	0	0.9	0.1
1	0	1	0.6	0.4
0	1	1	0.2	0.8
1	0	0	0.8	0.2
0	1	0	0.3	0.7
0	1	1	0.2	0.8
1	0	0	0.7	0.3
0	1	0	0.4	0.6
1	0	1	0.7	0.3
1	0	0	0.6	0.4
0	1	1	0.3	0.7
1	0	0	0.7	0.3

Expectation maximization

- The EM algorithm is used to solve maximum likelihood problems in general
- Applies when the likelihood has unknown hidden (latent) variables
 - Latent variables are model assumptions
 - Mixture problems can be stated using discrete latent variables
 - Hidden Markov model state is a discrete latent variable
 - Kalman filter state is a continuous latent variable
- EM not tied to mixture problems however
 - Any kind of probabilistic model with unknown variables
 - EM for Hidden Markov models is also known as *Baum-Welch* or *forward-backward recursion*
 - Very widely used

Expectation maximization

- EM finds local likelihood maxima by iterative optimization
 - Alternating between *E step* and *M step* until convergence
 - **E step:** compute expected values of hidden variables, given parameters
 - M step: re-estimate parameters, given values for hidden variables
 - Analogous to k-means

2008-02-27 / IS

© 2006 Nokia

Not guaranteed to find global likelihood maximum

Mixtures of Gaussians

- Multivariate Gaussian (normal) distribution $\mathcal{N}(x|\mu,\Sigma)$ parametrized by mean vector μ and covariance matrix Σ
- Gaussian mixture model is a linear combination of *K* Gaussian densities

$$p(oldsymbol{x}|oldsymbol{ heta}) = \sum_{k=1}^{K} \pi_k \mathcal{N}(oldsymbol{x}|oldsymbol{\mu}_k,oldsymbol{\Sigma}_k)$$

- π_k Component weights or mixing coefficients
- $oldsymbol{\mu}_k$ Component means
- $\mathbf{\Sigma}_k$ Component covariances
- $\boldsymbol{\theta} = \{\pi_1, \dots, \pi_K, \boldsymbol{\mu}_1, \dots, \boldsymbol{\mu}_K, \boldsymbol{\Sigma}_1, \dots, \boldsymbol{\Sigma}_K\}$ Model parameters

Covariance structures

- Covariance matrix structure can be controlled
- Full covariance matrices
 - Unrestricted covariance (symmetric)
 - Rotated ellipsoid shape
 - (D+1)D/2 parameters
- Diagonal covariance $\Sigma_{ij} = 0, \ i \neq j$
 - Zeros except on diagonal
 - Ellipsoid shape
 - D parameters
- Scaled identity covariance $\Sigma = \lambda I$
 - Zeros except on diagonal
 - Diagonal values are equal
 - Spherical shape
 - One parameter

Gaussian mixture likelihood

• Log-likelihood of Gaussian mixture

$$\log p(\boldsymbol{x}|\boldsymbol{\theta}) = \sum_{n=1}^{N} \log \left\{ \sum_{k=1}^{K} \pi_k \mathcal{N}(\boldsymbol{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) \right\}$$

• Maximum likelihood

$$\hat{\boldsymbol{\theta}} = \operatorname{argmax}_{\boldsymbol{\theta}} \log p(\boldsymbol{x}|\boldsymbol{\theta})$$

• Has no closed-form solution

Latent variable formulation of Gaussian mixtures

- To apply EM, we introduce latent *K*-dimensional indicator variable *z* to Gaussian mixtures
 - $z_k = 1$ iff k^{th} component is active
 - $z_k = 0$ otherwise

• Then
$$p(\boldsymbol{z}|\boldsymbol{\theta}) = \prod_{k=1}^{K} \pi_k^{z_k}$$
 and $p(\boldsymbol{x}|\boldsymbol{z}, \boldsymbol{\theta}) = \prod_{k=1}^{K} \mathcal{N}(\boldsymbol{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)^{z_k}$

• Marginalizing over *z*,

$$p(\boldsymbol{x}|\boldsymbol{\theta}) = \sum_{\boldsymbol{z}} p(\boldsymbol{z}|\boldsymbol{\theta}) p(\boldsymbol{x}|\boldsymbol{z}, \boldsymbol{\theta}) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\boldsymbol{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

Therefore, we obtain the same Gaussian mixture density as earlier

T-61.6020 Popular Algorithms in Data Mining and Machine Learning, TKK

EM for Gaussian mixtures

• Complete-data log likelihood

$$\log p(\boldsymbol{x}, \boldsymbol{z} | \boldsymbol{\theta}) = \log \prod_{n=1}^{N} \prod_{k=1}^{K} \pi_k^{z_{nk}} \mathcal{N}(\boldsymbol{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)^{z_{nk}} \ = \sum_n \sum_k^{N-1} z_{nk} [\log \pi_k + \log \mathcal{N}(\boldsymbol{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)]$$

• Responsibilities

$$\gamma(z_k) \equiv p(z_k = 1 | \boldsymbol{x}, \boldsymbol{\theta}) = \frac{\pi_k \mathcal{N}(\boldsymbol{x} | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_j \pi_j \mathcal{N}(\boldsymbol{x} | \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}$$

T-61.6020 Popular Algorithms in Data Mining and Machine Learning, TKK

E step

• Evaluate responsibilities, given current parameters

$$\gamma(z_{nk}) = \frac{\pi_k \mathcal{N}(\boldsymbol{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_j^K \pi_j \mathcal{N}(\boldsymbol{x}_n | \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}$$

M step

15

© 2006 Nokia

• Re-estimate parameters, given current responsibilities

$$\pi_{k} = \frac{1}{N} \sum_{n=1}^{N} \gamma(z_{nk})$$
$$\boldsymbol{\mu}_{k} = \frac{\sum_{n} \gamma(z_{nk}) \boldsymbol{x}_{n}}{\sum_{n} \gamma(z_{nk})}$$
$$\boldsymbol{\Sigma}_{k} = \frac{\sum_{n} \gamma(z_{nk}) (\boldsymbol{x}_{n} - \boldsymbol{\mu}_{k}) (\boldsymbol{x}_{n} - \boldsymbol{\mu}_{k})^{\top}}{\sum_{n} \gamma(z_{nk})}$$

E step

• Evaluate responsibilities, given current parameters

E step

© 2006 Nokia

17

• Evaluate responsibilities, given current parameters

E step

© 2006 Nokia

18

• Evaluate responsibilities, given current parameters

Demo: mixture of three Gaussians

- Two-dimensional data
- Find max likelihood estimate for means of a mixture of *k*=3 Gaussians
 - $\boldsymbol{\Sigma} = \boldsymbol{I}$
- E step
 - Show responsibilities in color
 - Red, green, blue color corresponding to each of three components
- M step

© 2006 Nokia

19

• Show Gaussian mixture density in color

T-61.6020 Popular

T-61.6020 Popular

0

-2

2

6

4

8

NOKIA

-4

-4

T-61.6020 Popular

M step #3, log p(X|θ)=-1217.593757

NOKIA

T-61.6020 Popular

Demo

E step #4, log p(X|θ)=-1217.593757

26 © 2006 Nokia 2

M step #4, log p(X|θ)=-1173.170092 8₁

NOKIA

T-61.6020 Popular

Demo

6

8

NOKIA

4

T-61.6020 Popular

28 © 2006 Nokia 2

M step #5, log p(X|θ)=-1171.878985 Demo 8Γ

NOKIA

T-61.6020 Popular

6

8

NOKIA

6 4 2 0 -2 -4 0 6 -2 2 8 4 -4

NOKIA

T-61.6020 Popular

General EM problem

- How to find maximum likelihood estimates of latent variables in a probabilistic model?
- Assumptions
 - Latent variables are random variables
 - Complete-data likelihood is known
 - Complete-data likelihood expectation can be maximized
- Requirements

© 2006 Nokia

32

- Observed data
- Complete-data likelihood
- Initial parameters

2008-02-27 / IS

• EM is not a single algorithm, but a recipe of an algorithm

General EM solution

• Given

- Observed data $oldsymbol{x}_1, oldsymbol{x}_2, \dots, oldsymbol{x}_N$
- Complete-data likelihood $p({m x}, {m z} | {m heta})$
- Initial parameters $heta^{
 m old}$

• E step

Conditional expectation $E_x[f(x)|y] = \int f(x)p(x|y)dx$

- Compute expected value of complete-data log likelihood $\log\,p({\bm x},{\bm z}|{\bm \theta})$ over hidden variables ${\bm z}$, given parameters ${\bm \theta}^{\rm old}$

$$Q(\boldsymbol{\theta}, \boldsymbol{\theta}^{\text{old}}) = \mathrm{E}_{\boldsymbol{z}}[\log p(\boldsymbol{x}, \boldsymbol{z} | \boldsymbol{\theta}) | \boldsymbol{x}, \boldsymbol{\theta}^{\text{old}}] = \sum p(\boldsymbol{z} | \boldsymbol{x}, \boldsymbol{\theta}^{\text{old}}) \log p(\boldsymbol{x}, \boldsymbol{z} | \boldsymbol{\theta})$$

• Assuming $m{z}$ is a random variable, $m{z} \sim p(m{z} | m{x}, m{ heta}^{
m old})$

• M step

- Re-estimate parameters $m{ heta}^{
m new}$, given values for hidden variables $Q(m{ heta},m{ heta}^{
m old})$

 $\boldsymbol{\theta}^{\text{new}} = \operatorname{argmax}_{\boldsymbol{\theta}} Q(\boldsymbol{\theta}, \boldsymbol{\theta}^{\text{old}})$

Repeat E and M steps until convergence (and restart with random parameters)

General EM algorithm properties

- Convergence to local maximum guaranteed
 - Each iteration can only increase the observed data likelihood
 - Not necessarily global maximum likelihood
- Benefits
 - Applicable to a wide variety of problems (latent probabilistic models)
 - Faster than Monte Carlo simulations
- Drawbacks
 - Maximum likelihood point estimates are often misleading, e.g., Gaussian singularities
 - Not strictly maximum likelihood (local maxima)
 - Slow convergence for big data
- Bayesian alternatives
 - Monte Carlo simulation
 - Variational approximation

Summary

- Expectation maximization is an algorithm recipe for solving maximum likelihood problems having latent variables
 - Algorithm recipe: family of related algorithms, not a single algorithm
 - Maximum likelihood: point estimate, not fully Bayesian
 - Latent variables: estimate arbitrary hidden parameters, not only Gaussian mixtures
- EM algorithm is iterative and converges to local likelihood maxima
- Full Bayesian alternatives are often computationally heavier
 - Monte Carlo, etc.
- EM for Gaussian mixtures
 - Estimate mixture weights, means, and covariances, given observations
 - Soft version of *k*-means
 - How to choose k?

References

- Bilmes, "A gentle tutorial of the EM algorithm and its application to parameter estimation for Gaussian mixture and hidden Markov models." Tech report, UC Berkeley, CA, USA, 1998.
- Bishop, "Pattern recognition and machine learning." p. 430–439, Springer, 2006.

