Assignments for Course T-61.6020, part I

February 12, 2008

In each assignment you should implement the algorithm according to the instruction. For each algorithm there will be a stub either in Matlab or Python, although you don’t have to use it. The stubs and the datasets can be obtained from the homepage of the course. The missing pieces of code in the stubs are marked with XXX.

In your report you should explain the algorithm (in roughly 1 page), report the results you achieve. Attach the source code and the commands you used for getting the answers.

The deadline for these homeworks is 26.3.

1 Id3

Implement id3.py and try it with

```
python id3.py id3_train_data.dat id3_train_class.dat \
    id3_purge_data.dat id3_purge_class.dat
```

Use Reduced Error Pruning (Section 2.2 in [Qui87]) for pruning. What tree did you receive after the purge?

2 Naïve / Chow-Liu Tree

Implement naive.m, a mixture of bernoulli variables, and try it on numbers.mat. Note that naive.m takes twist as a parameter. The idea is to handle problems with zero probabilities. In our case, the estimate for the margin i (in some component) is then

\[
\frac{\text{twist} + \sum_x x_i}{2 \times \text{twist} + N}.
\]

where the sum goes over x in the component and N is the number of elements in the component. Use twist = 1 as a parameter.

Implement mutual_entropy.m and cltree.m and try it on numbers.mat and numbers_cor.mat. Again we have bayesian twist as

\[
\frac{2 \times \text{twist} + \sum_x x_i}{4 \times \text{twist} + N}.
\]
for map-estimate of the margin \(i \) and

\[
\frac{\text{twist} + \sum x_j x_i}{4 \times \text{twist} + N}
\]

for the map-estimate of the co-occurrence of the variables \(i \) and \(j \).

Note that numbers datafile class variables start with 0 whereas the stub assumes that the class variables start with 1. To fix this add 1 into train_y and test_y variables.

3 k-NN

Implement knn.m and experiment it on two_circles.mat at points

\[
\{0, 0\}, \{-3, 0\}, \{3, 0\}, \{0, -3\}, \{0, 3\}
\]

Use \(K = 5 \), the number of points used for classification, and \(KM = 50 \), the number of points used for learning the metric. Set also \(eps = 0 \) and test different \(iter \) values, including \(iter = 0 \). Report the classification and the metric \(S \). Why \(S \) behaves the way it behaves?

4 AdaBoost

Implement adaboost.m, Adaboost algorithm using perceptron components. Try the algorithm on ada_data.mat, (train data). Use classify.m to test the prediction error for the training and the test data. Vary \(cnt \), the number of components from 1 to 1000. How the training/test error behave?

5 EM

Implement em_bernoulli.m, EM-algorithm for bernoulli process and try it on bernoulli.mat with \(K = 2 \). Implement em_gaussian.m and try it on three_gaussian.mat with \(K = 3 \).

References