Apriori algorithm

Seminar of Popular Algorithms in Data Mining and Machine Learning, TKK

> Presentation 12.3.2008 Lauri Lahti

Association rules

 Techniques for data mining and knowledge discovery in databases

Five important algorithms in the development of association rules (Yilmaz et al., 2003):

- AIS algorithm 1993
- SETM algorithm 1995
- Apriori, AprioriTid and AprioriHybrid 1994

Apriori algorithm

- Developed by Agrawal and Srikant 1994
- Innovative way to find association rules on large scale, allowing implication outcomes that consist of more than one item
- Based on minimum support threshold (already used in AIS algorithm)
- Three versions:
 - Apriori (basic version) faster in first iterations
 - AprioriTid faster in later iteratons
 - AprioriHybrid can change from Apriori to AprioriTid after first iterations

Limitations of Apriori algorithm

- Needs several iterations of the data
- Uses a **uniform** minimum support threshold
- Difficulties to find rarely occuring events
- Alternative methods (other than appriori) can address this by using a non-uniform minimum support thresold
- Some competing alternative approaches focus on partition and sampling

Phases of knowledge discovery

- 1) data selection
- 2) data cleansing
- 3) data enrichment (integration with additional resources)
- 4) data transformation or encoding
- 5) data mining
- 6) reporting and display (visualization) of the discovered knowledge

(Elmasri and Navathe, 2000)

Application of data mining

- Data mining can typically be used with transactional databases (for ex. in shopping cart analysis)
- Aim can be to build association rules about the shopping events
- Based on item sets, such as
 {milk, cocoa powder}
 {milk, corn flakes, bread}
 3-itemset

Association rules

- Items that occur often together can be associated to each other
- These together occuring items form a frequent itemset
- Conclusions based on the frequent itemsets form association rules
- For ex. {milk, cocoa powder} can bring a rule cocoa powder → milk

Sets of database

- Transactional database D
- All products an itemset $I = \{i_1, i_2, ..., i_m\}$
- Unique shopping event $\mathsf{T} \subseteq \mathsf{I}$
- T contains itemset X iff $X \subseteq T$
- Based on itemsets X and Y an association rule can be $X \rightarrow Y$
- It is required that $X \subset I, Y \subset I$ and $X \cap Y = \emptyset$

Properties of rules

- Types of item values: boolen, quantitative, categorical
- Dimensions of rules
 - 1D: buys(cocoa powder) → buys(milk)
 - 3D: age(X, 'under 12') ∧ gender(X, 'male')
 → buys(X, 'comic book')
- Latter one is an example of a profile association rule
- Intradimension rules, interdimension rules, hybriddimension rules (Han and Kamber, 2001)
- Concept hierarchies and multilevel association rules

Quality of rules

- Interestingness problem (Liu et al., 1999):
 - some generated rules can be self-evident
 - some marginal events can dominate
 - interesting events can be rarely occuring
- Need to estimate how interesting the rules are
- Subjective and objective measures

Subjective measures

- Often based on earlier user experiences and beliefs
- Unexpectedness: rules are interesting if they are unknown or contradict the existing knowledge (or expectations).
- Actionability: rules are interesting if users can get advantage by using them
- Weak and strong beliefs

Objective measures

- Based on threshold values controlled by the user
- Some typical measures (Han and Kamber, 2001):
 - simplicity
 - support (utility)
 - confidence (certainty)

Simplicity

- Focus on generating simple association rules
- Length of rule can be limited by userdefined threshold
- With smaller itemsets the interpretation of rules is more intuitive
- Unfortunately this can increase the amount of rules too much
- Quantitative values can be quantized (for ex. age groups)

Simplicity, example

- One association rule that holds association between cocoa powder and milk
 - buys(cocoa powder) → buys(bread,milk,salt)
- More simple and intuitive might be buys(cocoa powder) → buys(milk)

Support (utility)

- Usefulness of a rule can be measured with a minimum support threshold
- This parameter lets to measure how many events have such itemsets that match both sides of the implication in the association rule
- Rules for events whose itemsets do not match boths sides sufficiently often (defined by a threshold value) can be excluded

Support (utility) (2)

- Database D consists of events $T_1, T_2, ..., T_m$, that is D = { $T_1, T_2, ..., T_m$ }
- Let there be an itemset X that is a subregion of event T_k , that is $X \subseteq T_k$
- The support can be defined as $| \{ T_k \in D \mid X \subseteq T_k \} |$ sup(X) = -----

ID

 This relation compares number of events containing itemset X to number of all events in database

Support (utility), example

- Let's assume D = {(1,2,3), (2,3,4), (1,2,4), (1,2,5), (1,3,5)}
- The support for itemset (1,2) is $|\{T_k \in D \mid X \subseteq T_k\}|$ sup((1,2)) = ------ = 3/5

 $|\mathsf{D}|$

 That is: relation of number of events containing itemset (1,2) to number of all events in database

Confidence (certainty)

- Certainty of a rule can be measured with a threshold for confidence
- This parameter lets to measure how often an event's itemset that matches the left side of the implication in the association rule also matches for the right side
- Rules for events whose itemsets do not match sufficiently often the right side while mathching the left (defined by a threshold value) can be excluded

Confidence (certainty) (2)

- Database D consists of events $T_1, T_2, ..., T_m$, that is: D = {T₁, T₂,..., T_m}
- Let there be a rule $X_a \rightarrow X_b$ so that itemsets X_a and X_b are subregions of event T_k , that is: $X_a \subseteq T_k \land X_b \subseteq T_k$
- Also let $X_a \cap X_b = \emptyset$
- The confidence can be defined as

 $sup(X_a \cup X_b)$ $conf(X_a, X_b) = \cdots$

 This relation compares number of events containing both itemsets X_a and X_b to number of events containing an itemset X_a

Confidence (certainty), example

- Let's assume D = {(1,2,3), (2,3,4), (1,2,4), (1,2,5), (1,3,5)}
- The confidence for rule $1 \rightarrow 2$ $sup(1 \cup 2) \quad 3/5$ conf((1,2)) = ----- = ---- = 3/4 $sup(1) \quad 4/5$
- That is: relation of number of events containing both itemsets X_a and X_b to number of events containing an itemset X_a

Support and confidence

- If confidence gets a value of 100 % the rule is an exact rule
- Even if confidence reaches high values the rule is not useful unless the support value is high as well
- Rules that have both high confidence and support are called strong rules
- Some competing alternative approaches (other that Apriori) can generate useful rules even with low support values

Generating association rules

- Usually consists of two subproblems (Han and Kamber, 2001):
 - Finding frequent itemsets whose occurences exceed a predefined minimum support threshold
 - 2) Deriving association rules from those frequent itemsets (with the constrains of minimum confidence threshold)
- These two subproblems are soleved iteratively until new rules no more emerge
- The second subproblem is quite straight- forward and most of the research focus is on the first subproblem

Use of Apriori algorithm

- Initial information: transactional database D and user-defined numeric minimun support threshold *min_sup*
- Algortihm uses knowledge from previous iteration phase to produce frequent itemsets
- This is reflected in the Latin origin of the name that means "from what comes before"

Creating frequent sets

• Let's define:

 C_k as a candidate itemset of size k L_k as a frequent itemset of size k

• Main steps of iteration are:

1)Find frequent set L_{k-1}

- 2) Join step: C_k is generated by joining L_{k-1} with itself (cartesian product $L_{k-1} \times L_{k-1}$)
- 3)Prune step (apriori property): Any (k 1) size itemset that is not frequent cannot be a subset of a frequent k size itemset, hence should be removed

4)Frequent set L_k has been achieved

Creating frequent sets (2)

- Algorithm uses breadth-first search and a hash tree structure to make candidate itemsets efficiently
- Then occurance frequency for each candidate itemset is counted
- Those candidate itemsets that have higher frequency than minimum support threshold are qualified to be frequent itemsets

Apriori algorithm in pseudocode

- L₁= {frequent items};
- for (k= 2; $L_{k-1} \mathrel{!=} \varnothing$; k++) do begin
 - C_k = candidates generated from L_{k-1} (that is: cartesian product $L_{k-1} \times L_{k-1}$ and eliminating any
 - k-1 size itemset that is not frequent);
 - for each transaction t in database do
 - increment the count of all candidates in
 - C_k that are contained in t
 - L_k = candidates in C_k with *min_sup* end

 $\textbf{return} \cup_k L_k;$

Apriori algorithm in pseudocode (2)

Apriori Pseudocode

Apriori (T, ε) $L_1 \leftarrow \{ \text{ large 1-itemsets that appear } \}$ in more than \mathcal{E} transactions } $k \leftarrow 2$ while $L_{k-1} \neq \emptyset$ $C_k \leftarrow Generate(L_{k-1}) \leftarrow Join step and prune step$ for transactions $t \in T$ $C_t \leftarrow \text{Subset}(C_{\nu}t)$ for candidates $c \in C_t$ $\operatorname{count}[c] \leftarrow \operatorname{count}[c] + 1$ $L_k \leftarrow \{c \in C_k | \operatorname{count}[c] \ge \varepsilon\}$ $k \leftarrow k+1$ (Wikipedia) $_{return} \bigcup L_k$