Mari-Sanna Paukkeri

April 23, 2007

Outline

- Introduction
- 2 Markov Models
- 3 Hidden Markov Models
 - Maximum likelihood for the HMM
 - The forward-backward algorithm
 - The sum-product algorithm for the HMM
 - Scaling factors
 - The Viterbi algorithm
 - Extensions of the hidden Markov model

- 4 Linear Dynamical Systems
 - Inference in LDS
 - Learning in LDS
 - Extensions of LDS
 - Particle filters
- 5 Summary

Introduction

x_1 x_2 x_3 x_4

- Sets of data points assumed to be independent and identically distributed (i.i.d) so far
- i.i.d is a poor assumption for sequential data
 - measurements of time series (rainfall), daily values of a currency exchange rate, acoustic features in speech recognition

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 sequence of nucleotide base pairs along a strand of DNA, sequence of characters in an English sentence

Markov model

Markov model:

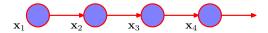
$$p(\mathbf{x}_1,\ldots,\mathbf{x}_N) = \prod_{n=1}^N p(\mathbf{x}_n | \mathbf{x}_1,\ldots,\mathbf{x}_{n-1})$$
(13.1)

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲□ ● ● ●

• Each of the conditional distributions is independent of all previous observations except *N* most recent

The first-order Markov chain

• Homogeneous Markov chain



• Joint distribution for a sequence of N observations

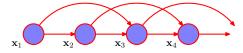
$$p(\mathbf{x}_1,\ldots,\mathbf{x}_N) = p(\mathbf{x}_1) \prod_{n=2}^N p(\mathbf{x}_n | \mathbf{x}_{n-1})$$
(13.2)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• From the d-separation property $p(\mathbf{x}_n | \mathbf{x}_1, \dots, \mathbf{x}_{n-1}) = p(\mathbf{x}_n | \mathbf{x}_{n-1}) \quad (13.3)$

A higher-order Markov chain

The second-order Markov chain

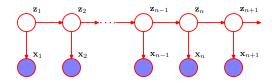


• The joint distribution

$$p(\mathbf{x}_1,\ldots,\mathbf{x}_N) = p(\mathbf{x}_1)p(\mathbf{x}_2|\mathbf{x}_1)\prod_{n=3}^N p(\mathbf{x}_n|\mathbf{x}_{n-1},\mathbf{x}_{n-2}) \qquad (13.4)$$

- A higher-order Markov chain
 - Observations are discrete variables having K states
 - first-order: K − 1 parameters for each K states
 → K(K − 1) parameters
 - *M*th order: $K^{M-1}(K-1)$ parameters

Hidden Markov models (HMM)



- **z**_n latent variables (discrete)
- **x**_n observed variables
- The joint distribution of the state space model

$$p(\mathbf{x}_1,\ldots,\mathbf{x}_N,\mathbf{z}_1,\ldots,\mathbf{z}_N) = p(\mathbf{z}_1) \left[\prod_{n=2}^N p(\mathbf{z}_n|\mathbf{z}_{n-1})\right] \prod_{n=1}^N p(\mathbf{x}_n|\mathbf{z}_n)$$
(13.6)

(日)、

Hidden Markov models (HMM)

• Transition probability

$$p(\mathbf{z}_n | \mathbf{z}_{n-1,\mathbf{A}}) = \prod_{k=1}^K \prod_{j=1}^K A_{jk}^{z_{n-1,j}z_{nk}}$$

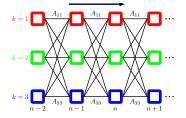
 $A_{jk} \equiv p(z_{nk} = 1 | z_{n-1,j} = 1),$

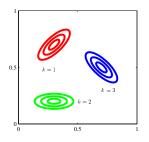
$$A_{jk} = p(z_{nk} - 1 | z_{n-1,j} - 1),$$

 $0 \le A_{jk} \le 1$ and $\sum_k A_{jk} = 1$

• Emission probability

$$p(\mathbf{x}_n|\mathbf{z}_n,\phi) = \prod_{k=1}^{K} p(\mathbf{x}_n|\phi_k)^{z_{nk}}$$



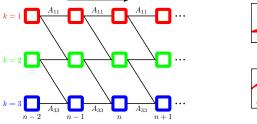


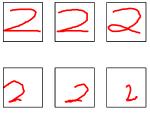
(日) (同) (日) (日)

200

HMM applications

- Speech recognition
- Natural language modelling
- Analysis of biological sequences (e.g. proteins and DNA)
- On-line handwriting recognition; Example: Handwritten digits
 - Left-to-right architecture
 - On-line data: each digit represented by the trajectory of the pen as a function of time





・ロト ・ 一下・ ・ ヨト ・ ヨト

Maximum likelihood for the HMM

• We have observed a data set

$$\mathbf{X} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\},\$$

• so we can determine the parameters of an HMM

$$\theta = \{\pi, \mathbf{A}, \phi\}$$

by using maximum likelihood.

• The likelihood function is

$$p(\mathbf{X}|\theta) = \sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z}|\theta)$$
(13.11)

Maximizing the likelihood function

Expectation maximization algorithm (EM)

- \bullet Initial selection for the model parameters: $\theta^{\rm old}$
- E step:

• Posterior distribution of the latent variables
$$p(\mathbf{Z}|\mathbf{X}, \theta^{\text{old}})$$

$$Q(\theta, \theta^{\text{old}}) = \sum_{\mathbf{Z}} p(\mathbf{Z} | \mathbf{X}, \theta^{\text{old}}) \ln p(\mathbf{X}, \mathbf{Z} | \theta)$$
(13.12)

Maximizing the likelihood function: EM

E step:

$$Q(\theta, \theta^{\text{old}}) = \sum_{k=1}^{K} \gamma(z_{1k}) \ln \pi_k + \sum_{n=2}^{N} \sum_{j=1}^{K} \sum_{k=1}^{K} \xi(z_{n-1,j}, z_{nk}) \ln A_{jk} + \sum_{n=1}^{N} \sum_{k=1}^{K} \gamma(z_{nk}) \ln p(\mathbf{x}_n | \phi_k)$$
(13.17)

• The marginal posterior distribution of a latent variable γ and the joint posterior distribution of two successive latent variables ξ

$$\gamma(\mathbf{z}_n) = p(\mathbf{z}_n | \mathbf{X}, \theta^{\text{old}})$$
(13.13)

$$\xi(\mathbf{z}_{n-1}, \mathbf{z}_n) = \rho(\mathbf{z}_{n-1}, \mathbf{z}_n | \mathbf{X}, \theta^{\text{old}})$$
(13.14)

Maximizing the likelihood function: EM

M step:

Maximize Q(θ, θ^{old}) with respect to parameters θ = {π, A, φ}, treat γ(z_n) and ξ(z_{n-1}, z_n) as constant. By using Lagrange multipliers

$$\pi_{k} = \frac{\gamma(z_{1k})}{\sum_{j=1}^{K} \gamma(z_{1j})}$$
(13.18)
$$A_{jk} = \frac{\sum_{n=2}^{N} \xi(z_{n-1,j}, z_{nk})}{\sum_{l=1}^{K} \sum_{n=2}^{N} \xi(z_{n-1,j}, z_{nl})}$$
(13.19)

Maximizing the likelihood function: EM

M step:

- Parameters ϕ_k independent
 - \rightarrow for Gaussian emission densities $p(\mathbf{x}|\phi_k) = \mathcal{N}(\mathbf{x}|\mu_k, \Sigma_k)$

$$\mu_{k} = \frac{\sum_{n=1}^{N} \gamma(z_{nk}) \mathbf{x}_{n}}{\sum_{n=1}^{N} \gamma(z_{nk})}$$
(13.20)
$$\Sigma_{k} = \frac{\sum_{n=1}^{N} \gamma(z_{nk}) (\mathbf{x}_{n} - \mu_{k}) (\mathbf{x}_{n} - \mu_{k})^{\mathsf{T}}}{\sum_{n=1}^{N} \gamma(z_{nk})}$$
(13.21)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

C.M. Bishop: Pattern Recognition and Machine Learning Ch. 13. Sequential data Hidden Markov Models <u>The forward-backward algorithm</u>

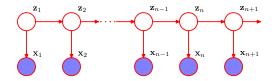
Back to the problem...

- We have observed a data set $\mathbf{X} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$,
- so we can determine the parameters of an HMM $\theta = \{\pi, \mathbf{A}, \phi\}$
- by maximizing the likelihood function $p(\mathbf{X}|\theta) = \sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z}|\theta)$.

- We used EM to maximize $Q(\theta, \theta^{\text{old}})$ and resulted to coefficients $\pi_k(\gamma)$, $A_{jk}(\xi)$, $\mu_k(\gamma)$ and $\Sigma_k(\gamma)$.
- How to evaluate γ and ξ ?

The forward-backward algorithm

The forward-backward algorithm



◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ● ○○○

- Two-stage message passing algorithm
- Several variants, we focus on alpha-beta algorithm

Hidden Markov Models

The forward-backward algorithm

Evaluate $\gamma(\mathbf{z}_n)$

• Using Bayes' theorem

 γ

$$(\mathbf{z}_{n}) = p(\mathbf{z}_{n}|\mathbf{X}) = \frac{p(\mathbf{X}|\mathbf{z}_{n})p(\mathbf{z}_{n})}{p(\mathbf{X})}$$
(13.32)
$$= \frac{p(\mathbf{x}_{1}, \dots, \mathbf{x}_{n}, \mathbf{z}_{n})p(\mathbf{x}_{n+1}, \dots, \mathbf{x}_{N}|\mathbf{z}_{n})}{p(\mathbf{X})}$$
$$= \frac{\alpha(\mathbf{z}_{n})\beta(\mathbf{z}_{n})}{p(\mathbf{X})}$$
(13.33)

where we have defined

$$\alpha(\mathbf{z}_n) = p(\mathbf{x}_1, \dots, \mathbf{x}_n, \mathbf{z}_n) \tag{13.34}$$

$$\beta(\mathbf{z}_n) = p(\mathbf{x}_{n+1}, \dots, \mathbf{x}_N | \mathbf{z}_n)$$
(13.35)

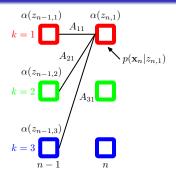
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Hidden Markov Models

The forward-backward algorithm

Evaluate $\gamma(\mathbf{z}_n)$: forward-backward

Forward recursion for $\alpha(\mathbf{z}_n)$



$$\alpha(\mathbf{z}_n) = p(\mathbf{x}_n | \mathbf{z}_n) \sum_{\mathbf{z}_{n-1}} \alpha(\mathbf{z}_{n-1}) p(\mathbf{z}_n | \mathbf{z}_{n-1})$$
(13.36)

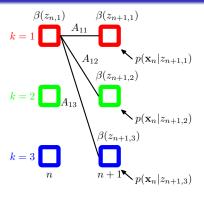
$$\alpha(\mathbf{z}_1) = p(\mathbf{x}_1, \mathbf{z}_1) = p(\mathbf{z}_1)p(\mathbf{x}_1|\mathbf{z}_1) = \prod_{k=1}^{K} \{\pi_k p(\mathbf{x}_1|\phi_k)\}^{\mathbf{z}_{1k}}$$
(13.37)

Hidden Markov Models

The forward-backward algorithm

Evaluate $\gamma(\mathbf{z}_n)$: forward-backward

Backward recursion for $\beta(\mathbf{z}_n)$



・ロン ・ 理 と ・ ヨ と ・ ヨ と … 正 …

$$\beta(\mathbf{z}_n) = \sum_{\mathbf{z}_{n+1}} \beta(\mathbf{z}_{n+1}) p(\mathbf{x}_{n+1} | \mathbf{z}_{n+1}) p(\mathbf{z}_{n+1} | \mathbf{z}_n)$$
(13.38)
$$\beta(\mathbf{z}_N) = 1$$

Hidden Markov Models

The forward-backward algorithm

Evaluate $\xi(\mathbf{z}_{n-1}, \mathbf{z}_n)$

• Using Bayes' theorem

$$\xi(\mathbf{z}_{n-1}, \mathbf{z}_n) = p(\mathbf{z}_{n-1}, \mathbf{z}_n | \mathbf{X})$$

$$= \frac{p(\mathbf{X} | \mathbf{z}_{n-1}, \mathbf{z}_n) p(\mathbf{z}_{n-1}, \mathbf{z}_n)}{p(\mathbf{X})}$$

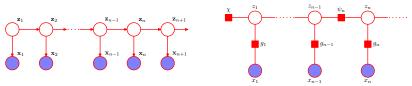
$$= \frac{\alpha(\mathbf{z}_{n-1}) p(\mathbf{x}_n | \mathbf{z}_n) p(\mathbf{z}_n | \mathbf{z}_{n-1}) \beta(\mathbf{z}_n)}{p(\mathbf{X})}$$
(13.43)

(ロ)、(型)、(E)、(E)、 E、 の(の)

The sum-product algorithm for the HMM

The sum-product algorithm for the HMM

- Solve the problem of finding local marginals for the hidden variables γ and ξ
- Can be used instead of forward-backward algorithm



Results in

$$\gamma(\mathbf{z}_n) = \frac{\alpha(\mathbf{z}_n)\beta(\mathbf{z}_n)}{p(\mathbf{X})}$$
(13.54)
$$\xi(\mathbf{z}_{n-1}, \mathbf{z}_n) = \frac{\alpha(\mathbf{z}_{n-1})p(\mathbf{x}_n|\mathbf{z}_n)p(\mathbf{z}_n|\mathbf{z}_{n-1})\beta(\mathbf{z}_n)}{p(\mathbf{X})}$$
(13.43)

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ● ○○○

Scaling factors

Used to solve forward-backward algorithm

$$\alpha(\mathbf{z}_n) = p(\mathbf{x}_n | \mathbf{z}_n) \sum_{\mathbf{z}_{n-1}} \alpha(\mathbf{z}_{n-1}) p(\mathbf{z}_n | \mathbf{z}_{n-1})$$
(13.36)

• Probabilities $p(\mathbf{x}_n | \mathbf{z}_n)$ and $p(\mathbf{z}_n | \mathbf{z}_{n-1})$ are often significantly less than unity

 \rightarrow values $\alpha(\mathbf{n}_n)$ go to zero exponentially quickly

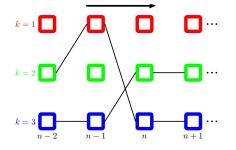
• We introduce re-scaled versions

$$\hat{\alpha}(\mathbf{z}_n) = \frac{\alpha(\mathbf{z}_n)}{p(\mathbf{x}_1, \dots, \mathbf{x}_n)}$$
(13.55)
$$\hat{\beta}(\mathbf{z}_n) = \frac{\beta(\mathbf{z}_n)}{p(\mathbf{x}_{n+1}, \dots, \mathbf{x}_N | \mathbf{x}_1, \dots, \mathbf{x}_n)}$$

The Viterbi algorithm

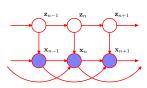
The Viterbi algorithm

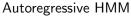
- Finding the most probable sequence of latent states is not the same as that of finding the set of states that are individually the most probable.
 - The latter problem has been solved already
 - The max-sum algorithm (Viterbi algorithm) can be used to solve the former problem

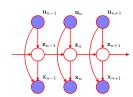


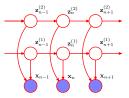
Extensions of the hidden Markov model

Extensions of the hidden Markov model









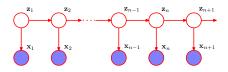
Input-output HMM

Factorial HMM

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

C.M. Bishop: Pattern Recognition and Machine Learning Ch. 13. Sequential data Linear Dynamical Systems

Linear Dynamical Systems



- A linear-Gaussian model
 - The general form of algorithms for the LDS are the same as for the HMM
 - Continuous latent variables
 - Both observed \mathbf{x}_n and latent \mathbf{z}_n variables Gaussian
 - Joint distribution over all variables, marginals and conditionals are Gaussian
 - ⇒ The sequence of individually most probable latent variable values is the same as the most probable latent sequence (no Viterbi considerations)

C.M. Bishop: Pattern Recognition and Machine Learning Ch. 13. Sequential data Linear Dynamical Systems

Linear Dynamical Systems

• Transition and emission probabilities

$$p(\mathbf{z}_n|\mathbf{z}_{n-1}) = \mathcal{N}(\mathbf{z}_n|\mathbf{A}\mathbf{z}_{n-1}, \Gamma)$$
(13.75)

$$p(\mathbf{x}_n | \mathbf{z}_n) = \mathcal{N}(\mathbf{x}_n | \mathbf{C} \mathbf{z}_n, \Sigma)$$
(13.76)

• The initial latent variable

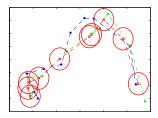
$$p(\mathbf{z}_1) = \mathcal{N}(\mathbf{z}_1 | \mu_0, \mathbf{V}_0)$$
 (13.77)

The parameters θ = {A, Γ, C, Σ, μ₀, V₀} determined using maximum likelihood through EM

C.M. Bishop: Pattern Recognition and Machine Learning Ch. 13. Sequential data Linear Dynamical Systems Inference in LDS

Inference in LDS

- Find the marginal distributions for the latent variables conditional on the observation sequence
- **②** Given the parameters $\theta = \{\mathbf{A}, \Gamma, \mathbf{C}, \Sigma, \mu_0, \mathbf{V}_0\}$, predict the next latent state \mathbf{z}_{n+1} and next observation \mathbf{x}_{n+1}
 - Sum-product algorithm
 - Kalman filter (forward-recursion, α message)
 - Kalman smoother (backward-recursion, β message)
 - Application of the Kalman filter: tracking



- True positions of the object
- Noisy measurements of the positions
- x Means of the inferred positions

C.M. Bishop: Pattern Recognition and Machine Learning Ch. 13. Sequential data Linear Dynamical Systems

Learning in LDS

Learning in LDS

- Determine $\theta = \{\mathbf{A}, \Gamma, \mathbf{C}, \Sigma, \mu_0, \mathbf{V}_0\}$ using maximum likelihood (again)
- Expectation maximization

• E step:

$$Q(\theta, \theta^{\text{old}}) = \mathbb{E}_{\mathsf{Z}|\theta^{\text{old}}}[\ln p(\mathsf{X}, \mathsf{Z}|\theta)]$$
(13.109)

▲□▶▲□▶▲□▶▲□▶ □ のQ@

 $\bullet\,$ M step: Maximize with respect to the components of $\theta\,$

C.M. Bishop: Pattern Recognition and Machine Learning Ch. 13. Sequential data Linear Dynamical Systems Extensions of LDS

Extensions of LDS

- The marginal distribution of the observed variables is Gaussian
 ⇒ use Gaussian mixture as the initial distribution for z₁
- Make Gaussian approximation by linearizing around the mean of the predicted distribution
 - Extended Kalman filter
- Combining the HMM with a set of linear dynamical systems

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ● ○○○

• Switching state space model

C.M. Bishop: Pattern Recognition and Machine Learning Ch. 13. Sequential data Linear Dynamical Systems

Particle filters

Particle filters

Sampling methods

- Needed for dynamical systems which do not have a linear-Gaussian
- Sampling-importance-resampling formalism
 ⇒ a sequential Monte Carlo as the particle filter
- Particle filter algorithm: At time step *n*
 - obtained a set of samples and weights
 - observe \mathbf{x}_{n+1}
 - evaluate samples and weights for time step n+1

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ● ○○○

Summary

Markov model

• Discrete observed variables; each depends on *N* previous observations

Hidden Markov model

• Discrete latent variables

Linear dynamical systems

• Continuous latent variables

