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Introduction

Sampling

In many practical problems sampling is used to
» Obtain a collection of samples {z{)} from a distribution p(z)

» Approximate the expected value of a function
Elf] = [ f(zp(2))dz

Sampling allows the expectation to be approximated as

o 1 |
f:sz(z())

=1
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Introduction

What's so hard about sampling?

Why not just simply examine all possible values of p(z) and
generate samples accordingly.

Consider a problem where a 1000-dimensional variable can have 50
values in all dimensions. Integrating over the whole distribution
would require evaluating p(z) in 501%%° points. By comparison, the
total amount of electrons in the universe is about 2260 .
Problems
. . . 1 ~
» How to normalize the distribution p(z) = Z—Pp(z)?

» How to generate independent samples?
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The solution

Most sampling methods use the basic idea of

1. first selecting some other distribution g(z) that can be
sampled directly and then

2. compensate for the adverse effects of using a wrong
distribution.
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11.1 Basic Sampling Algorithms

mportance-resampling
nd the EM algorithm

From uniform to nonuniform random numbers

» Generating uniformly distributed (pseudo)random numbers is
easy

» Suppose that z is uniformly distributed in (0,1) and a function
f(-) is used to make a transformation y = f(z) and

p(y) = p(2)| £|

:=h)= [ o)y

—00
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Importance sampling
Sampling-importance-resampling
Sampling and the EM algorithm

Box-Muller

» The Box-Muller method can be used to generate Gaussian
random numbers from uniformly distributed random numbers
» First, random number pairs z1, 2z, € (—1,1) are generated from
1

a uniform distribution inside a unit circle = 1
» Then, we evaluate

Yi= Zi(i2 |2n = )1/2
r
where i = {1,2} and r? = 22 4 22
» Now y; and y» are independent and have a Gaussian
distribution with zero mean and unit variance
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Sampling-importance-resampling
Sampling and the EM algorithm

Rejection sampling

» Suppose we wish to generate samples from p(z) for which we
can easily evaluate p(z) = p(2)

» We can draw samples from another (simpler) proposal
distribution g(z) multiplied by a constant k so that
ka(2) > B(z) ¥z

» Now we can generate a random number zy from g(z) and
accept it with a probability p(z)/kq(z)

» The selection of g(z) and k effects the rejection rate of
samples
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Adaptive rejection sampling

Importance sampling
Sampling-importance-resampling
Sampling and the EM algorithm

Rejection sampling
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Importance sampling
importance-resampling
Sampling and the EM algorithm

Adaptive rejection sampling

» In practice it is often difficult to determine a suitable analytic
form for g(z)

» The envelope distribution can be adjusted during the sampling
process by defining g(z) in smaller pieces

Inp(z)
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11.1 Basic Sampling Algorithms

Importance sampling

» If we are only interested in evaluating the expectations of a
function, we can use importance sampling to draw samples
from a proposal distribution and compensate the error by using
importance weights

z z()
E[f] :/f(z)p(z)dz :/f(z)&q(z)dz ~ 1y p( 3 F(z0)

q(z) —

» Similarly to rejection sampling, the performance is heavily
dependent on the selection of g(z)
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Adaptive rejection sampling

Importance sampling
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Importance sampling
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11.1 Basic Sampling Algorithms

Adaptive reje sampling
sampling
mportance-resampling
Sampling and the EM algorithm

Sampling-importance-resampling

» It is often difficult to define the parameter k which was needed
in rejection sampling
» We can avoid using the parameter by the following proceedure

1. draw L samples from q(z)

2. compute importance weights (wq, ..., w;) for the samples

3. re-select L samples from {z} according to probabilities given
by the weights
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Importance sampling
Sampling-importance-resampling

Sampling and the EM algorithm

Sampling and the EM algorithm

» Sampling can also be useful in finding maximum likelihood
solutions, for example, if the E-step cannot be performed
analytically

» Consider a model with observed variables X, hidden variables
Z and parameters 6

» The maximized (M-step) complete-data log likelihood can be
approximated by sampling

~ =

L
Q6.6 = [ p(ZIX.6%)n pZ.X[8)dZ = 1 3" Inp(2", X16)
=1
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11.2 Markov Chain Monte Carlo

The Metropolis-Hastings algorithm

Markov Chain Monte Carlo

» The previously discussed sampling methods suffer from
limitations in high-dimensional spaces due to high rejection
rates

» MCMC methods produce samples by maintaining a record of a
current state z(7) and a proposal distribution g(z|z)(") to
produce a sequence of samples z!, z%, z3 forming a Markov
chain

> At each step a candidate sample z* is generated and then
accepted or rejected according to a criterion

» In the basic Metropolis algorithm, a candidate sample is
accepted with a probability

p(z") )

p(z")

A(z*,2(7) = min(1,




11.2 Markov Chain Monte Carlo

The Metropolis-Hastings algorithm

Metropolis algorithm

25
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11.2 Markov Chain Monte Carlo

The Metropolis-Hastings algorithm

Metropolis-Hastings algorithm

» In the Metropolis-Hastings algorithm the proposal distribution
is no longer symmetric and the acceptance of the proposal
state is defined by

7* Z(T) — min .5( )q ( (T)|Z*)
Ak(Z", )= (1, (2 )k(z*|z(T)))

where k labels the members of the set of possible transitions

being considered

» The scale of the proposal distribution has a strong influence on
the performance of the algorithm

» large step size — independent samples
» small step size — small rejection rate
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11.2 Markov Chain Monte Carlo

The Metropolis-Hastings algorithm

Metropolist-Hastings algorithm

O-rn ax

Omin
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11.3 Gibbs Sampling

Gibbs sampling

» Gibbs sampling is a modification of the Metropolis-Hastings
algorithm which involves iteratively replacing the value of one
variable by a value drawn from the distribution of the value
conditioned with all the other variables

zi < p(zilz\;)

» The practical applicability of Gibbs sampling is determined by
the difficulty of sampling from the conditional distributions

p(zilz\;)
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11.4 Slice Sampling

Splice sampling

Zmax

z () z
(b)
» The sensitivity to the step size in Metropolis algorithms can be
overcome by using an adaptive step size using slice sampling

» Slice sampling involves augmenting z with an additional
variable u and then drawing samples from the joint (z, u) space
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Dynamical systems
Hybrid Monte Carlo

11.5 The Hybrid Monte Carlo Algorithm

Dynamical systems

The Hybrid Monte Carlo algorithm is rooted in the simulation of
dynamical physical systems (Hamiltonian dynamics). Details
omitted here, see section 11.5.1 of the book..

Basic idea: augment the variable position z in the state space with
a momentum variable r and define the total energy of the system as
the sum of the potential and kinetic energy

H(z,r) = E(z) + K(r)
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Dynamical systems

Hybrid Monte Carlo

11.5 The Hybrid Monte Carlo Algorithm

Hybrid Monte Carlo

» Standard Metropolis algorithms suffer from random walk -type
behavior where the exploration of the state stapce is slow
(proportional to y/number of steps)

» Using a larger step size would only lead to a high rejection rate

» Now, new proposed states are accepted according to
transisions in the Hamiltonian dynamics and accepting the
state with the probability

min(1,exp(H(z,r) — H(z",r")))
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11.6 Estimating the Partition Function

Estimating the Partition Function

» Most of the considered sampling methods have only used the
functional form of the distribution p(z) without knowlegeabout
the normalization constant Z (=partition function)

> If we write

pe(2) = 5 ex(~E(2)

is not needed to draw samples from p(z)

» Still, knowledge about Zg would be useful for Bayesian model
comparison (since it represents the model evidence)

» To compare models, only the ratio of partition functions is
needed and can be computed as

ZE . Z exp E ~ /) I
2 Leonl B S el E(") + 6
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11.6 Estimating the Partition Function

Summary

» Sampling methods can be used to evaluate expectations in
situations where deterministic inference methods are not
applicable

» The accuracy of Monte Carlo estimates depends only on the
variance (not dimensionality) of the sampled space — often a
small number of samples suffices

» Basic sampling methods based on proposal distributions g(z)
do not scale well to higher-dimensional spaces

» Markov Chain Monte Carlo methods are useful in higher
dimensions but the random walk behavior can produce
dependent samples
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