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Chapter 3 overview:

- Linear basis function models - o)
- The bias-variance decomposition oy

- Bayesian Linear Regression Of
- Bayesian Model Comparison o
- The Evidence approximation _ o]

- Limitations of Fixed Basis Functions
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Chapter Introduction

 Regression: predict the value of one or more continuous target variables t
given the value of a D-dimensional vector x of input variables.

« Linear regression models is one class of models that shares the property
of being linear functions of the adjustable parameters.

« From a probabilistic point of view, we aim to model the predictive
distribution p(t | x), thus expressing the uncertainty of the prediction

 Linear models have nice analytical properties, despite their limitations,
input spaces. Also, they form the
foundation for more sophisticated models (later chapters)

particularly for high dimensional
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Linear Basis Function Models

A linear combination of fixed functions of input x=(x,,

M-1

pxw) = 2w (x) = wé(x)

where ¢ ,(x) are the basis functions,
and the number of parameters is M.

Using non-linear basis functions,
y(x,w)is a non-linear function of x.

Maximum likelihood and least squares

1

2zrnings

X,)" is of the form:

0.5

The target variable t is given by t=y(X,w)+¢€, and with Gaussian noise we get the

: . : Ly T -1
likelihood function p(t|X,w,8)=]] _ N(t|w"$(x,).87")

Maximizing the likelihood function for y , we get the normal equations for the

least squares problem w,,=(®'®) '®"t, where ® is an N x M matrix with ., =¢,(x,)
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Linear Basis Function Models
Geometry of least squares S

The least squares solution for w corresponds to the choice %
of of y that lies in the subspace S and that is closest to t, e
which is spanned by the basis function.

Sequential learning and regularized LS

If the data is large enough, then we can try to use sequential algorithms.
* Applying the stochastic gradient descent, we get the LMS algorithm for the

(T+1):W(T)+n(tn_W(T)T¢n)¢n

sum-of-squares error: w
By adding a regularization term to the error function we can control over-fit.
* For instance, using the so-called weight decay, the error function becomes
R el T 2 A7
E(W)+AE,(w)==2, {t,—w' ¢(x,)] +5w' w

2 2
« With this regularization term, we obtain a simple extension for the LS solution:

w=(AT+® " ®)"'d"t
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The Bias-Variance Decomposition

Up until now, we assumed that the form and number of basis functions are fixed.
But using the LS method can lead to over-fit in complex models. Also, limiting the
number of basis function limits the flexibility of the model.

Using reqgularization leads to the question on how to find the optimum A.
So, in order to avoid these problems, we should consider a Bayesian treatment.

But first, let us examine a frequentist view-point of the model complexity:
the bias-variance trade-off.

The expected squared loss can be written in the form:

E[L]= [ {y(x)=h(x)] p(x)dx+ [ (h(x)=t] p(x,1)d xdi
With some manipulation the expected loss becomes:

E[L]=[[E,[y(x;D)]-h(x)}p(x) dx+fE y(x;D)=E,[y(x; D))’ ]p(x)dx
+ (A (x,t)d x dt

which is of the form: expected loss = (bias)2 + variance + noise

Espoo, 27/01/07



HE SN NN ERE T OF TECIEINCLOEY _f*g_l.JSDZD SJU:—)C]EJJ CQLJIJ:‘:—) ]IJ CQIIJJULJ'E:—JIJ

| AECRINTCRY CF CONEUTER AN D) 2nd Informeztion Sclancs 1l
\ INFCRIVIRTICNECIENCE Mzicnina Laairning: Basic Princliolas

The Bias-Variance Decomposition

* There is a trade-off between bias _
and variance. t

InA=26

« The best model is the one that
leads to an optimal balance - "
between bias and variance.

« Small values of A allow the model
to tune to the noise on each | 4
individual data set leading to high o7
variance. Conversely, a large A
pulls the weight towards zero,
leading to a large bias. : i

InA=-0.31

o}
—_

« The bias-variance provides some '
insight into model complexity, but
requires several data sets.

« Therefore, let us proceed to the _ |
Bayesian approach 0 ., .

ot
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Bayesian Linear Regression
Parameter distribution
How to decide the appropriate model complexity?
® Maximizing the likelihood: it would lead to complex models and over-fit.

R: Bayesian treatment: avoids the over-fit and leads to an automatic way of
determining the model complexity using only the training data.

We start by defining a simple likelihood conjugate prior, a zero-mean Gaussian
prior governed by a precision parameter:

p(wle)=N (w|0,0" 1)
(we could use more general prior but this simplifies the Bayesian treatment)

This prior, according to Bayes law, leads to the posterior distribution:
p(w|t)=N (w|m,,S)=N(w|BSy® t,a I+BP D)

The log of the posterior distribution is then Inp(wl|t)= Z (¢ —chi)(xn)}z—%wT

which has the regularization term A:E , iIn least square sense.
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Bayesian Linear Regression
Parameter distribution

likelihood prior/posterior data space

» Using y(x,w)=w,+w,x

as an example model, we can observe
several important aspects of Bayesian
inference.

S
S
S

S

 The data was generated from the function:
f(x(n),a)=—0.3+0.5x(n)+0.2v(n)

-1
-1 0wy

 The likelihood provides a soft constrain |
that the line must be close to the data point. .,

—
1

—
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—
—
[=3

=
—

wWo

« After two data points, because they are 0 0
sufficient to define a line, the posterior - - =
already has a very compact shape. | C
« With an infinite number of data points, the " o R
posterior distribution would be centred on 57 °

the true parameter values. |
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Bayesian Linear Regression

Predictive distribution

« Usually we want to evaluate the
predictive distribution:

B)p(w

« This is the convolution of the
conditional distribution of the target
variable and the posterior weight
distribution. This results in:

plt]x,t, o, B)=N (t|m] $(x), 0% (x))

)d w

plt

o1 .
o (%)= 5+ b (x) Sy b(x)

« The first term represents the data
noise whereas the second s
associated with the uncertainty of
parameters w.
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Bayesian Linear Regression
Equivalent kernel

 The posterior mean solution has an interesting interpretation, that sets the
stage for kernel methods, including Gaussian processes.

 The predictive mean can be written in the form:

v(x,my) =mhp(x)=Bp(x) Sy @ t= > Bd(x) S d(x,)t,

- And we can also write it as: yx, my=2. kx,x,)t,
where k(x,x"=Bp(x) Syp(x") is known as the smoother matrix or equivalent
kernel.

« Regression functions which make predictions by taking linear combi-
nations of the training set target values are know as linear smoothers.

« The formulation of linear regression in terms of kernel functions suggests
that we can define a localized kernel directly and use this to make
predictions for the new inputs, given the observed set. This leads to a
framework called Gaussian processes (to be reviewed later).
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Bayesian Model Comparison

The Bayesian model comparison involves the use of probabilities to represent
uncertainty in the choice of model. Suppose we wish to compare a set of L
models {M.}. The posterior is given by p(M,|D)oc p(M,) P(D|M,)

The prior allows to express a preference (or not) for the different models. The
term P(D|M.) is called model evidence or marginal likelihood, and provides the
basis for model selection.

The model evidence expresses the preference shown from the data to
different models. For a model governed by a set of parameters w, we have
p(DIM,)=] p(Dlw, M) p(w|M,)dw

By analysing the marginal likelihood, we can see that it favours models with

intermediate complexity. R
p(D)

M,

Ms
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The Evidence Approximation

Since it would be analytically intractable to marginalize over the
hyperparameters (a and B) or w, we'll discuss an approximation in which we
set the hyperparameters to specific values by maximing the marginal
likelihood function by first integrating over the parameters w. This is called
evidence approximation.

The predictive distribution obtained by marginalizing over o, p and w is:

(cl)=[ | | p(ilw.B) p(w

To determine values for the hyperparameters from the training data alone, we
proceed to evaluate the marginal likelihood for the linear basis function model
and then to find its maxima.

(ex, Blt)dwd xd B

There are two approaches to do this. We can evaluate the evidence function
analytically and then set its derivative to zero to obtain a re-estimation for the
hyperparameter's equation (next slides). Or use a technique called
expectation maximization (EM) algorithm (to be covered later).
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The Evidence Approximation
Evaluation of the EF

« The marginal likelihood is obtained by integrating over the weight
parameters w, and we can write the evidence function as:

B N2 o M2
p<t|o<,B>=<21T> (5) Jexp -Ew)dw
e where
B A=-VVE w)=-xI+BP" &
gnt dw|’ = mNmN+2(W—mN)TA(W—mN) mNzﬁA_IQPTt
And the log marginal likelihood is: ~18]

M N 1 N
By WAWising "/ wWRA Gt vmakE B " MBdel =

comparison and get the hyper-parameters. sl
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The Evidence Approximation
Maximizing the EF and effective number of parameters

- First, let us consider maximization with respect to a. Defining (8®' ®)u,=A.u,

A,
- We see that the maximizing value for a is: a=—2%— , where y-Y, ;
m, my «+lambda,

« The maximization with respect to B gives: %2% ot —my d(x,)
4

- These solutions are implicit, because both y and m  depend on these values.
An iterative method can be used to find the hyper-parameter's optimal values.

Because o' @ is a positive definite matrix, it will have positive eigenvalues and,
consequently, y will vary between 0 and M. For direction where y >> a, the
corresponding w, will be close to its maximum likelihood value. Such parameters

are called well defined, due to the fact that they are tightly constrained by the
data.

» Therefore, y measures the effective number of well determined parameters
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Summary of chapter 3

Linear basis functions can create a model where the regression is a non-linear
function of the input vector x.

They have nice analytical properties and form the foundation for more
sophisticated models.

The Bayesian linear regression method allow the full use of the basis
functions avoiding the over-fit to the data and leads to automatic methods of
determining the model complexity using only the training data.

Despite all the advantages from using linear models, they have the significant
limitations, especially in high-dimensional input spaces. The difficulty stems
stems from the assumption are fixed before the training data set is observed.
As a consequence, the number of basis functions needs to grow rapidly with
the dimensionality D of the input space.

In later chapters, more sophisticated models that overcome this limitation,
like neural networks or support vector machines, will be presented.

I hope you have enjoyed this review of
Espoo, 27/01/07 l[inear models for regression.



