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Chapter 3 overview:

− Linear basis function models
− The bias-variance decomposition
− Bayesian Linear Regression
− Bayesian Model Comparison
− The Evidence approximation
− Limitations of Fixed Basis Functions

Presentation based on the book:

Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer, 
2006. ISBN 0387310738
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Chapter Introduction

 Regression: predict the value of one or more continuous target variables t 
given the value of a D-dimensional vector x of input variables.

 Linear regression models is one class of models that shares the property 
of being linear functions of the adjustable parameters.

 From a probabilistic point of view, we aim to model the predictive 
distribution p(t l x), thus expressing the uncertainty of the prediction

 Linear models have nice analytical properties, despite their limitations, 
particularly for high dimensional input spaces. Also, they form the 
foundation for more sophisticated models (later chapters)
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Linear Basis Function Models

y  x ,w  = ∑ j=0

M - 1
w j j  x = w T x 

A linear combination of fixed functions of input x=(x1,...,xN)
T is of the form:

where          are the basis functions, 
and the number of parameters is M.

Using non-linear basis functions, 
     is a non-linear function of x.

The target variable t is given by                   , and with Gaussian noise we get the 

likelihood function

Maximizing the likelihood function for   , we get the normal equations for the 

least squares problem                         , where Φ is an N x M matrix with

Maximum likelihood and least squares
t=y X ,w 

p t∣X ,w ,=∏n=1

N
N  tn∣w

T xn ,
−1

w
wML=T−1T t nj= j xn

y  x ,w 

 j x
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Linear Basis Function Models
Geometry of least squares
The least squares solution for w corresponds to the choice 
of of y  that lies in the subspace SS  and that is closest to t, 
which is spanned by the basis function.

Sequential learning and regularized LS
If the data is large enough, then we can try to use sequential algorithms.

 Applying the stochastic gradient descent, we get the LMS  algorithm for the 

sum-of-squares error:

 

By adding a regularization term to the error function we can control over-fit.

 For instance, using the so-called weight decay, the error function becomes 

 With this regularization term, we obtain a simple extension for the LS solution:

                                            

w1=wtn−w
Tnn

E w  EW w =
1
2∑n=1

N
{tn−w

Txn}
2

2
wT w

w= IT−1T t
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The Bias-Variance Decomposition
Up until now, we assumed that the form and number of basis functions are fixed. 
But using the LS method can lead to over-fit in complex models. Also, limiting the 
number of basis function limits the flexibility of the model.

Using regularization leads to the question on how to find the optimum λ.

So, in order to avoid these problems, we should consider a Bayesian treatment.

But first, let us examine a frequentist view-point of the model complexity:        
the bias-variance trade-off.

The expected squared loss can be written in the form:

With some manipulation the expected loss becomes: 

which is of the form: expected loss = (bias)2  + variance + noise

E [L ]=∫ {y  x −h x }2 p  x d x∫ {h  x −t }2 p  x , t d x dt

E [L]=∫ {ED[ y  x ; D]−h x 
2} p x d x∫ ED[{y  x ; D−ED [ y x ;D]}2] p  x d x

∫ {h  x −t }2 p x , t d x dt
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The Bias-Variance Decomposition
 There is a trade-off between bias 

and variance.

 The best model is the one that 
leads to an optimal balance 
between bias and variance.

 Small values of λ  allow the model 
to tune to the noise on each 
individual data set leading to high 
variance. Conversely, a large λ 
pulls the weight towards zero, 
leading to a large bias.

 The bias-variance provides some 
insight into model complexity, but  
requires several data sets.

 Therefore, let us proceed to the 
Bayesian approach
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How to decide the appropriate model complexity?

R: Maximizing the likelihood: it would lead to complex models and over-fit.

R: Bayesian treatment: avoids the over-fit and leads to an automatic way of 
determining the model complexity using only the training data.

We start by defining a simple likelihood conjugate prior, a zero-mean Gaussian 
prior governed by a precision parameter:

(we could use more general prior but this simplifies the Bayesian treatment)

This prior, according to Bayes law, leads to the posterior distribution:

The log of the posterior distribution is then

which has the regularization term          , in least square sense.

Bayesian Linear Regression
Parameter distribution

p w∣=N w∣0,−1 I 

p w∣t =N w∣mN ,S N =N w∣S N
T t , IT

ln p w∣t=−
2∑n=1

N
{tn−w

T xn }
2−

2
wT w

=

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Bayesian Linear Regression
Parameter distribution

 Using                          

as an example model, we can observe 
several important aspects of  Bayesian 
inference.

 The data was generated from the function: 

 The likelihood provides a soft constrain  
that the line must be close to the data point.

 After two data points, because they are 
sufficient to define a line, the posterior 
already has a very compact shape.

 With an infinite number of data points, the 
posterior distribution would be centred on 
the true parameter values.

y  x ,w=w0w1 x

f x n , a=−0.30.5 x n0.2v n
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Bayesian Linear Regression
Predictive distribution
 Usually we want to evaluate the 

predictive distribution:

 This is the convolution of the 
conditional distribution of the target 
variable and the posterior weight 
distribution. This results in:

 The first term represents the data 
noise whereas the second is 
associated with the uncertainty of 
parameters w.

pt∣t , ,=∫ pt∣w , p w∣t , ,d w

pt∣x , t , ,=N t∣mn
Tx  ,N

2 x

N
2 x = 1

xT SN x 
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Bayesian Linear Regression
Equivalent kernel
 The posterior mean solution has an interesting interpretation, that sets the 

stage for kernel methods, including Gaussian processes.

 The predictive mean can be written in the form:

 And we can also write it as:

    where                                   is known as the smoother matrix or equivalent 
kernel. 

 Regression functions which make predictions by taking linear combi-
nations of the training set target values are know as linear smoothers.

 The formulation of linear regression in terms of kernel functions suggests 
that we can define a localized kernel directly and use this to make 
predictions for the new inputs, given the observed set. This leads to a 
framework called Gaussian processes (to be reviewed later).

y x ,mN  =mN
T x=x T SN

T t= ∑n=1

N
xT S Nxnt n

y x ,mN =∑n=1
N k x , xn t n

k x , x ' =  x T SN x ' 
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The Bayesian model comparison involves the use of probabilities to represent 
uncertainty in the choice of model. Suppose we wish to compare a set of L 
models {Mi}. The posterior is given by

The prior allows to express a preference (or not) for the different models. The 
term              is called model evidence or marginal likelihood, and provides the 
basis for model selection.

The model evidence  expresses the preference shown from the data to 
different models. For a model governed by a set of parameters w, we have

By analysing the marginal likelihood, we can see that it favours models with 
intermediate complexity.

Bayesian Model Comparison

p M i∣D∝ p M iP D∣M i

P D∣M i 

p D∣M i=∫ p D∣w , M i p w∣M id w
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Since it would be analytically intractable to marginalize over the 
hyperparameters (α  and β) or w, we'll discuss an approximation in which we 
set the hyperparameters to specific values by maximing the marginal 
likelihood function by first integrating over the parameters w. This is called 
evidence approximation.

The predictive distribution obtained by marginalizing over α, β and w is:

To determine values for the hyperparameters from the training data alone, we 
proceed to evaluate the marginal likelihood for the linear basis function model 
and then to find its maxima.

There are two approaches to do this. We can evaluate the evidence function 
analytically and then set its derivative to zero to obtain a re-estimation for the 
hyperparameter's equation (next slides). Or use a technique called 
expectation maximization (EM) algorithm (to be covered later).

The Evidence Approximation

p t∣t=∫∫∫ p  t∣w , p w∣t , , p  ,∣t dw d  d 
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 The marginal likelihood is obtained by integrating over the weight 
parameters w, and we can write the evidence function as:w, and we can write the evidence function as:

 wherewhere

The Evidence Approximation
Evaluation of the EF

p t∣ ,=


2

N /2




2

M /2

∫exp {−E w }d w

E w =

2
∥t−w∥

2


2
mN
T mN

1
2
w−mN 

T A w−mN 
A=∇ ∇ E w = IT 
mN= A−1T t

ln p t∣ ,=
M
2

ln 
N
2

ln−E mN −
1
2
∣A∣−

N
2

ln 2

And the log marginal likelihood is:And the log marginal likelihood is:

By maximizing it, we can make a model By maximizing it, we can make a model 
comparison and get the hyper-parameters.comparison and get the hyper-parameters.
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 First, let us consider maximization with respect to α. Defining

 We see that the maximizing value for α is:                , where 

 The maximization with respect to β gives:

 These solutions are implicit, because both γ and mN depend on these values.    
An iterative method can be used to find the hyper-parameter's optimal values.

Because         is a positive definite matrix, it will have positive eigenvalues and, 
consequently, γ  will vary between 0 and M. For direction where γ  >> α,  the 
corresponding wi will be close to its maximum likelihood value. Such parameters 
are called well defined, due to the fact that they are tightly constrained by the 
data. 

 Therefore, γ measures the effective number of well determined parameters

The Evidence Approximation
Maximizing the EF and effective number of parameters

Tui=iu i

=


mN
T mN

=∑i
i

lambda i
1

=

1
N −

∑n=1
N

{t n−mN
T  xn}

2

T
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Summary of chapter 3

I hope you have enjoyed this review of I hope you have enjoyed this review of 
linear models for regressionlinear models for regression..

Linear basis functions can create a model where the regression is a non-linear 
function of the input vector x.

They have nice analytical properties and form the foundation for more 
sophisticated models.

The Bayesian linear regression method allow the full use of the basis 
functions avoiding the over-fit to the data and leads to automatic methods of 
determining the model complexity using only the training data.

Despite all the advantages from using linear models, they have the significant 
limitations, especially in high-dimensional input spaces. The difficulty stems 
stems from the assumption are fixed before the training data set is observed. 
As a consequence, the number of basis functions needs to grow rapidly with 
the dimensionality D of the input space.

In later chapters, more sophisticated models that overcome this limitation, 
like neural networks or support vector machines, will be presented.


