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Outline
• An overview of Chapter 2 of the book [1]

• Binary variables

• Multinomial variables

• The Gaussian distribution

• The exponential family

• Nonparametric methods
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Introduction

• Probability distributions and their 
properties

• (Probability distributions are) “of great 
interest in their own right”

• Also “building blocks for more complex 
models” (later in the book)

• Basic (ill-posed) problem: density estimation 
of a random variable given observations

• Parametric and nonparametric methods
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Binary Variables
• First, consider a single binary 

random variable 
• Probability distribution

•  
• Likelihood function for data 

set                            is

• Maximum likelihood estimator
                            or
               where      is the 
number of observations
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Jacob Bernoulli
1654–1705

Bern(x|µ) = µx(1− µ)1−x

x ∈ {0, 1}

D = {x1, . . . , xN}
p(D|µ) =

∏N
n=1 µxn(1− µ)1−xn

µML = 1
N

∑N
n=1 xn

µML = m
N m

x = 1

E[x] = µ, var[x] = µ(1− µ)



• The distribution of the number 
of ones       in      trials is

• Mean and variance are given by

(independence of repeated trials 
⇒ means and variances add up)

Binary Variables
The binomial distribution
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Binomial distribution
N = 10 and µ = 0.25

Nm

Bin(m|N, µ) =
(N
m

)
µm(1− µ)N−m

E[x] = Nµ, var[x] = Nµ(1− µ)
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Binary Variables
Overfitting and a proposed fix

• Maximum likelihood estimation can results 
in overfitting

• Example: Flipping a coin 3 times and 
observing 3 heads ⇒               

• Overfitting can be fixed with Bayesian 
treatment

• Prior distribution        needed
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µML = 1

p(µ)



• The beta distribution

is a conjugate prior for the binomial distr.

• Conjugacy means that the posterior has 
the same functional form as the prior

• Posterior (where              )

• Interpretation:      and      in the prior are 
effective number of observations         
and          , respectively

Binary Variables
The beta distribution (1/4)

Beta(µ|a, b) = Γ(a+b)
Γ(a)Γ(b)µ

a−1(1− µ)b−1

p(µ|m, l, a, b) = Γ(m+a+l+b)
Γ(m+a)Γ(l+b)µ

m+a−1(1− µ)l+b−1

l = N −m

a b

x = 1

x = 0
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Binary Variables
The beta distribution (2/4)
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Plots of the beta distribution



• Predictions, given the prior and 
observations, can be made with

• Result agrees with ML in the limit of 
infinitely large number of observations

• General property of Bayesian learning

Binary Variables
The beta distribution (3/4)

p(x = 1|D) = m+a
m+a+l+b
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• In the Bayesian setting, a sequential 
approach is possible

• Observations are taken in one at a time 
or in small batches

• Old posterior becomes new prior

Binary Variables
The beta distribution (4/4)
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One step of sequential Bayesian inference. Prior is beta with 
a=2, b=2. Likelihood corresponds to an observation x=1.



Multinomial Variables
• Consider a discrete variable that can take 

one of      possible values

• Convenient representation with a vector 
where one element equals 1, others 0, e.g.

• Prob. distrib.                         with              

• Generalization of the Bernoulli distribution

• Likelihood 
where       is the number of observations 
belonging to category
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K

x = (0, 0, 1, 0, 0, 0)T

p(x|µ) =
∏K

k=1 µxk
k

∑
k µk = 1

p(D|µ) =
∏N

n=1

∏K
k=1 µxnk

k =
∏K

k=1 µmk
k

mk

k



• Maximum likelihood estimators

• Distribution of different categories in  
observations, the multinomial distribution:

where 

• Constraint

Multinomial Variables (2)

µML
k = mk

N

( N
m1m2...mK

)
= N !

m1!m2!...mK !

Mult(m1, m2, . . . ,mK |µ,N) =
( N
m1m2...mK

) ∏K
k=1 µmk

k

∑K
k=1 mk = N

N
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Multinomial Variables
The Dirichlet distribution (1)

• Family of conjugate prior 
distributions for the 
parameters

•  
where 

• From the posterior (omitted), 
we see that the       are the 
effective number of 
observations in each category

Johann Peter Gustav 
Lejeune Dirichlet

1805–1859
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{µk}

Dir(µ|α) = Γ(α0)
Γ(α)···Γ(αK)

∏K
k=1 µαk−1

k

α0 =
∑K

k=1 αk

αk



Multinomial Variables
The Dirichlet distribution (2)

{αk} = 1{αk} = 0.1 {αk} = 10

Plots of the Dirichlet distribution (K=3).
The horizontal axes are coordinates in the red plane.
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The domain of the Dirichlet
distribution, K=3, is the red plane
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The Gaussian 
Distribution
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Carl Friedrich Gauss
1777–1855

N (x|µ,Σ) = 1
(2π)D/2

1
|Σ|1/2 exp

{
− 1

2 (x− µ)T Σ−1(x− µ)
}

• Also known as the normal 
distribution

• Can be motivated from a variety 
of perspectives

• Maximizes entropy

• Sum of multiple random 
variables approaches Gaussian

•  



The Gaussian Distribution (2)
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Histogram of the mean of N uniform random variables
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• The central limit theorem contains the result 
about the sum of random variables 
approaching Gaussian

• The rate of convergence depends on the 
distributions of the variables



The Gaussian Distribution (3)
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• The Gaussian density 
is constant on 
elliptical surfaces
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Different forms of
covariance matrix

General

Diagonal

Identity
The major axes of the ellipse
are given by the eigenvectors

of the covariance matrix



The Gaussian Distribution (4)
Some properties

• Consider two distinct sets of variables,
     and      , with             jointly Gaussian

• Conditional distribution            is Gaussian

• Marginal distribution         is Gaussian

• Conjugate priors:

• Gaussian for the mean

• Gamma for the variance

• Product of Gaussian and gamma, if both are 
estimated

xa xb

p(xa|xb)

p(xa,xb)

p(xa)
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The Gaussian Distribution (4)
Mixtures of Gaussians

• Multimodal data can be handled with a 
mixture of multiple Gaussian distributions

•  

•               are the mixing coefficients

•  
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p(x) =
∑K

k=1 πkN (x|µk,Σk)

∑K
k=1 πk = 1

0 ≤ πk ≤ 1

0.5 0.3

0.2

(a)

0 0.5 1

0

0.5

1 (b)

0 0.5 1

0

0.5

1

A mixture of Gaussians



The Gaussian Distribution (5)
Themes not covered here...

• Handling of periodic variables

• The von Mises distribution

• Student’s t-distribution as the posterior 
distribution of a Gaussian variable, when the 
precision of the Gaussian has a Gamma prior

• See the book for more information

20



The Exponential Family
• A broad class of probability distributions

• Gaussian, Bernoulli, multinomial...

• Probability is                                     
where     are natural parameters and        
is a normalization constant

• There are general results for the family

• Sufficient statistics for ML estimators

• Existence and form of conjugate priors

• etc.
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p(x|η) = h(x)g(η)exp{ηT u(x)}
η g(η)



Noninformative priors
• In Bayesian inference, prior information 

about the problem is used

• Sometimes, there is little information

• Then, a noninformative prior may be used

• Designed to have as little influence on 
the posterior as possible

• Example: Gaussian prior with            for 
estimating the mean     of a Gaussian

• Improper priors can be used, if posterior is 
proper

σ2
0 →∞

µ
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Nonparametric Methods

• In the parametric methods seen so far, a bad 
choice of the model may result in poor 
predictive performance

• Example: trying to model multimodal data 
with a Gaussian distribution

• Nonparametric methods make fewer 
assumptions
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Nonparametric Methods
Histograms for density estimation
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1. Partition the input space into 
bins of width      (often            )

2. Count observations in each bin

3. Count probabilities
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5• Example for one dimension

• Can also be used for quick 
visualization in two dimensions

• Unsuitable for most applications

• Discontinuities at bin edges

• Poor scaling with increasing 
dimensionality

ni

∆i ∆i = ∆

pi = ni
N∆i

Histograms with
different bin widths.

Underlying distribution
drawn in green.



25

Nonparametric Methods
Kernel density estimators

• Given      observations, place a 
probability mass      centered on 
each observation

• Different kinds of kernels can be 
used as the probability mass

• Constant in a hypercube

• (Symmetric) Gaussian

• The smoothness of the model 
can be adjusted

• Size of the hypercube

• Variance of the Gaussian
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5

Gaussian kernel
density estimation.

Underlying distribution
drawn in green.

N
1
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Nonparametric Methods
Nearest-neighbour density estimation
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1. Choose a point     where to 
estimate the density

2. Grow a sphere centered at     
until it contains     points

3. Density estimate is                  ,
    is the volume of the sphere

x

x
K

p(x) = K
NV

V

• Not a true density model 
(intregral over all space diverges)

K-nearest-neighbour
density estimation.

Underlying distribution
drawn in green.



Nonparametric Methods
Nearest-neighbour classification

1. Choose a point     to classify

2. Grow a sphere centered at     until it contains     points

3. Classify     according to the majority class in the      points

x

x K

x K
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K-nearest-neighbour classification
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Nonparametric Methods
There is a problem

• In both the K-nearest-neighbours method 
and the kernel density estimator, all training 
data needs to be stored

• Heavy computational requirements with 
a large data set

• Compromise between accuracy and 
efficiency: tree-based search structures



Summary
• Various probability distributions

• Especially the Gaussian distribution has 
great practical significance

• Parametric and nonparametric methods

• Both have advantages and disadvantages

• This chapter of the book is basic 
knowledge, required later in the book and 
“in real life” (if your life happens to be 
research...)
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