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Qutline

® An overview of Chapter 2 of the book [I]
® Binary variables
® Multinomial variables
® The Gaussian distribution
® The exponential family

® Nonparametric methods

[1] Christopher M. Bishop.  Pattern Recognition and Machine Learning.
Springer, 2006. ISBN 0387310738.
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Introduction

Probability distributions and their
properties

(Probability distributions are) “of great
interest in their own right”

Also “building blocks for more complex
models” (later in the book)

Basic (ill-posed) problem: density estimation
of a random variable given observations

Parametric and nonparametric methods
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Binary Variables

* First, consider a single binary
random variable z € {0,1}

* Probability distribution
Bern(x|p) = p®(1 — p)' ="

o Elz| = p, var[z] = p(l — p)

e Likelihood function for data
set D= {z1,..., TN} is
p(Dlp) = TTney pn (1= p)' =

e Maximum likelihood estimator
Uy = &S T, or
urvrn = 5 where m is the
number of observations = =1

" . !
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Jacob Bernoulli
1654—1705



Binary Variables
The binomial distribution

03—

e The distribution of the number
of ones m in N trials is

Bin(m|N, p) = ()™ (1 — p)N =

m

0.2

0.1}

* Mean and variance are given by
Elz| = Np, varlz] = Np(1—p)

o . 012345672135110
(independence of repeated trials

= means and variances add up) Binomial distribution
N =10 and p = 0.25



Binary Variables
Overfitting and a proposed fix

® Maximum likelihood estimation can results
in overfitting

® Example: Flipping a coin 3 times and
observing 3 heads = umr =1

® Overfitting can be fixed with Bayesian
treatment

® Prior distribution p(¢) needed



Binary Variables
The beta distribution (1/4)

® The beta distribution
Beta(pla, b) = prgeay e~ (1 — )b
is a conjugate prior for the binomial distr.
® Conjugacy means that the posterior has
the same functional form as the prior

® Posterior (where 1=N —m)

I'(m-+a+1+0b m-+a— _
p(ulm, 1, a,b) = prmtabettl pmre=t (1 — p)l+e=

® |nterpretation: ¢ and b in the prior are
effective number of observations =z =1
and =z =0 , respectively

7




Binary Variables
The beta distribution (2/4)

a=0.1

b=0.1
2 |
O 1
0 0.5 m 1
3 .

a =2

b=3
2

Plots of the beta distribution
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Binary Variables
The beta distribution (3/4)

® Predictions, given the prior and
observations, can be made with

p(:l:‘ — HD) — mﬁj—?+b

® Result agrees with ML in the limit of
infinitely large number of observations

® General property of Bayesian learning



Binary Variables
The beta distribution (4/4)

® |n the Bayesian setting, a sequential
approach is possible

® (Observations are taken in one at a time
or in small batches

® Old posterior becomes new prior

22— - 2 — 2 , -
prior likelihood function posterior

1t {1y 1|

0 ' 0 ' 0 '
0 0.5 1 0 0.5 1 0 0.5 1

One step of sequential Bayesian inference. Prior is beta with
a=2, b=2. Likelihood corresponds to an observation x=1.
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Multinomial Variables

® Consider a discrete variable that can take
one of K possible values

® Convenient representation with a vector
where one element equals |, others 0, e.g.

x = (0,0,1,0,0,0)%
® Prob. distrib. p(x|p) = [T, 1" with > i =1
® (Generalization of the Bernoulli distribution
® Likelihood »(Dlu) =TT0_, [Tey k™ =TTy 1y
where mi is the number of observations
belonging to category &



Multinomial Variables (2)

mg

® Maximum likelihood estimators )/t =

® Distribution of different categories in

observations, the multinomial distribution:

K m
Mult(my, mo,...,mg|u, N) = (mlmi\i.mK) | e

Where (mlmiVmK) — ml!mi\!f.!..mK!

. K
® Constraint 2 p—imuw =N




Multinomial Variables
The Dirichlet distribution (1)

e Family of conjugate prior
distributions for the
parameters {/ix}

: ' K Qg —
o Dir(ula) = r(a).(..po()aK) [y 1" :

K
where ap =), ax

* From the posterior (omitted),

we see that the o are the

effective number of Johann Peter Gustav

observations in each category Lejeune Dirichlet
[805—-1859



Multinomial Variables
The Dirichlet distribution (2)

\ The domain of the Dirichlet
.. distribution, K=3, is the red plane

M1

e AR

fap) = 0.1 ™ fap) = 170 fap) =10
Plots of the Dirichlet distribution (K=3).
The horizontal axes are coordinates in the red plane.
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The Gaussian
Distribution

e Also known as the normal
distribution

e Can be motivated from a variety
of perspectives

* Maximizes entropy

\&=
Carl Friedrich Gauss
|777—1855

° N(X‘,LL, E) — (QW)lD/z |Z|11/2 CXP {_%(X o M)Tz_l(x o :u)}

|5

* Sum of multiple random
variables approaches Gaussian




The Gaussian Distribution (2)

® T[he central limit theorem contains the result
about the sum of random variables
approaching Gaussian

® The rate of convergence depends on the
distributions of the variables

N =1 | N =9

0)
0.5 1 0 0.5 1 0 0.5 1
Hlstogram of the mean of N uniform random variables

O
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The Gaussian Distribution (3)

® The Gaussian density
is constant on General
elliptical surfaces

X1
U2 :EQ‘
ug

@
v ) Diagonal
Ve b)
A2 &

Identity

The major axes of the ellipse

are given by the eigenvectors Differen?forms of
of the covariance matrix

covariance matrix



The Gaussian Distribution (4)
Some properties

® Consider two distinct sets of variables,
x, and x» , with p(x.,x) jointly Gaussian

® Conditional distribution p(x.|xs) is Gaussian
® Marginal distribution p(x,) is Gaussian
® Conjugate priors:

® (aussian for the mean

® Gamma for the variance

® Product of Gaussian and gamma, if both are
estimated



The Gaussian Distribution (4)

Mixtures of Gaussians

® Multimodal data can be handled with a
mixture of multiple Gaussian distributions

® p(x)= Z;ﬁil TN (X[ g, X

® 0<m <1 are the mixing coefficients

@ Zk 17’%—1

Il &/

A mlxture of Gaussians
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The Gaussian Distribution (5)
Themes not covered here...

® Handling of periodic variables
® The von Mises distribution

® Student’s t-distribution as the posterior
distribution of a Gaussian variable, when the
precision of the Gaussian has a Gamma prior

® See the book for more information
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The Exponential Family

® A broad class of probability distributions
® (Gaussian, Bernoulli, multinomial...

® Probability is p(x|n) = h(x)g(n)exp{n’ u(x)}
where 7 are natural parameters and g(n)
is a normalization constant

® There are general results for the family
e Sufficient statistics for ML estimators
® Existence and form of conjugate priors

® etc.
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Noninformative priors

® |n Bayesian inference, prior information
about the problem is used

® Sometimes, there is little information
® Then, a noninformative prior may be used

® Designed to have as little influence on
the posterior as possible

® Example: Gaussian prior with 0§ — oo for
estimating the mean ¢ of a Gaussian

® |Improper priors can be used, if posterior is
proper
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Nonparametric Methods

® |n the parametric methods seen so far, a bad
choice of the model may result in poor
predictive performance

® Example: trying to model multimodal data
with a Gaussian distribution

® Nonparametric methods make fewer
assumptions
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Nonparametric Methods
Histograms for density estimation

|. Partition the input space into S oy .
bins of width A; (often A; = A | -
( . ) N =y = .»ﬂ—|’_mrﬂ“
2. Count observations in each bin n; O 0.5 !
3. Count probabilities Pi = wFA; 2 =00 _—
0 L B |
e Example for one dimension Y 0.5 1
A =0.25
e Can also be used for quick
visualization in two dimensions 0, ‘ > 1
e Unsuitable for most applications Histograms with
e Discontinuities at bin edges different bin widths.

* Poor scaling with increasing Underlying distribution
dimensionality drawn in green.
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Nonparametric Methods

Kernel density estimators

e Given N observations, place a

probability mass + centered on

each observation

e Different kinds of kernels can be
used as the probability mass

e Constant in a hypercube
e (Symmetric) Gaussian

¢ The smoothness of the model
can be adjusted

* Size of the hypercube

e Variance of the Gaussian
25
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0

Gaussian kernel
density estimation.
Underlying distribution
drawn in green.

h = 0.005
A~ /\\/'\JL A
1
h = 0.07
0.5 1
h=0.2 |
0.5 1



Nonparametric Methods

Nearest-neighbour density estimation

|. Choose a point x where to 5
estimate the density JW\U { “ }\ “ | HU U (
2. Grow a sphere centered at x K
until it contains K points N \
3. Density estimate is p(x) = =, ¢ -
. 0 0.5 1
V is the volume of the sphere 5

* Not a true density model

(intregral over all space diverges) © 05 1
K-nearest-neighbour

density estimation.
Underlying distribution
drawn in green.
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|. Choose a point x to classify

Nonparametric Methods

Nearest-neighbour classification

2. Grow a sphere centered at x until it contains K points

3. Classify x according to the majority class in the K points
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K-nearest-neighbour classification
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Nonparametric Methods
There is a problem

® |n both the K-nearest-neighbours method
and the kernel density estimator, all training
data needs to be stored

® Heavy computational requirements with
a large data set

® Compromise between accuracy and
efficiency: tree-based search structures
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Summary

® Various probability distributions

® Especially the Gaussian distribution has
great practical significance

® Parametric and nhonparametric methods

® Both have advantages and disadvantages

® This chapter of the book is basic
knowledge, required later in the book and

“in real life” (if your life happens to be
research...)
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