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Kernels
● Input Output sets 

● Training set                                                     

● Generalization : given unseen            , find 

●            should be “similar” to

● How to measure similarity..??
– Outputs - Loss Function
– Inputs - “Kernels”
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x1, y1 ,x2, y2 , . . . . , xn , yn ∈ X×Y
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Similarity of Inputs
● Symmetric Function

● If             , Dot product gives a linear kernel

● For instance, in      we can collect monomial 

features extractors of degree 2 in a nonlinear map

k : X×X  R
x , x '   k x , x ' 
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k  x , x ' =xT x '
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Kernel Algorithm



Kernel Methods
● For a N dimensional input, we have N

F
 monomials

                                                 [For a 16x16 pixel input image and 

                                                 monomial degree d = 5     N
F
 = 1010]   

● If     is not a dot product space, then there exists a map 

                    such that  

where      is a linearized feature space.
● Compute dot products in high dimensional feature 

spaces without explicitly mapping into them by means 

of kernels that are nonlinear in input space.
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Kernel Methods
● Kernel Trick      If the input vector enters any 

algorithm only in the form of scalar products, then 

replace the scalar product by some appropriate 

kernel.
– Kernel PCA
– Kernel Fisher Discriminant

● Linear Parametric Model     Dual Representations
● Can also be applied to symbolic inputs such as 

strings, sets, graphs, text documents etc..







Dual Representations
● Linear Regression Model      Minimize the 

regularized sum of squares error function

● Formulate Gram Matrix 

        symmetric matrix 
● Prediction for new input x
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Types of Kernels
● Stationary Kernels

● Homogeneous Kernels - Radial Basis Functions

● Positive Definite Kernels - For Symmetric kernels

                               , the Gram Matrix K with

elements                            is positive definite, i.e., 

k  x , x ' = k  x−x ' 

k  x , x ' = k ∣∣x−x '∣∣

k  x , x ' = k  x ' , x

an
T K am0

K nm= k  xn , xm



Examples of Kernels
● Simple Polynomial Kernel – terms of degree 2

● Generalized Polynomial kernel – degree M

● Gaussian Kernels – not related to gaussian pdf !

● Sigmoidal Kernels – Gram Matrix is not p.d

k  x , x ' =  xT x2

k  x , x ' =  xT xcM , c0

k  x , x ' = exp −∣∣x−x '∣∣2/22

k  x , x ' = tanh a xT xb



Examples of Kernels



Construction of Kernels
● Given valid kernels                and                , the 

following are also valid kernels   

k1 x , x '  k 2x , x ' 

k 2x , x ' = c k1 x , x '  , c0

k 2x , x ' = f  xk 1x , x '  f  x ' 

k 2x , x ' = expk1 x , x ' 

k 2x , x ' = k1 x , x ' k 2 x , x ' 

k 2x , x ' = k1 x , x ' k 2 x , x ' 



Construction of Kernels

● Kernels from probabilistic generative model
– Can be used in discriminative setting

● Given a generative model        , define a kernel by

– Can be interpreted as inner product in the one 

dimensional feature space defined by mapping 
– Two inputs x and x' are similar if they both have high 

probabilities

p  x

k  x , x ' = p  x p x ' 

p x



Construction of Kernels
● We can further extend this class of kernels by 

considering sums over products of different 

probability distributions with positive weighting 

coefficients

● For continuous latent variables, we have

k  x , x ' =∑
i

p  x /i  p x ' /i p i

k  x , x ' =∫ p  x / z  p x ' / z  p z dz



Construction of Kernels
● Consider parametric generative model 
● Find a kernel that measures similarity of two input vectors 

induced by the generative model.
● Consider the gradient w.r.t parameter θ that defines a 

vector in feature space having the same dimensionality as 

the parameter vector θ.
● Fisher Score 
● Fisher Kernel
● Fisher Information Matrix

p  x /

g  , x= ln p x /
k  x , x ' = g  , xT F−1 g  , x ' 

F = E x [ g  , x g  , x
T ]



Radial Basis Functions
● Basis function depends only on the radial distance 
● Developed for exact function interpolation
● Linear combination of radial basis functions, one 

centered on every data point.

● Interpolation when input variables are noisy. 

Noise on the input variable x is described by a 

variable e having a distribution v(e)

f x =∑
n=1

N

wnh ∣∣x−xn∣∣



Radial Basis Functions
● Sum of squares error function is given by

● Using calculus of variations, optimize w.r.t to the 

function f(x) to give

● The basis functions are given by 

E= 1
2∑n=1

N

∫{ y xne−tn }
2v e de

y  xn=∑
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N

tnh x−xn

h xn=
v  x−xn

∑
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v  x−xn



Radial Basis Functions
● One basis function centered on every data point
● Basis functions are normalized.
● Computationally costly to evaluate when making 

predictions for new data points
● Choice of basis functions centers

– Use any randomly chosen subset of the data points
– Systematic approach – Orthogonal Least Squares

● Sequential selection process based on sum of squares error



Nadaraya - Watson Model
● We have training set {x

n
, t

n
}. We use a parzen density 

estimator to model the joint distribution

● f(x,t) is the component density function and there is 

one such component centered on each data point
● Find the regression function y(x) corresponding to the 

conditional average of the target variable conditioned 

on the input variable.

p  x , t = 1
N ∑n=1

N

f  x−xn , t−t n



Nadaraya - Watson Model
● Regression function

● Watson - Nadaraya Model

                                                                 , where  

                                          and  

y  x= E [ t / x ]=∫
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Nadaraya - Watson Model
● Nadaraya – Watson Kernel Regression model using 

isotropic gaussian kernels for the sinusoidal data set



Gaussian Processes
● Dispose the parametric model in regression.
● Define a prior probability distribution over the 

functions directly
● Gaussian process is defined as the probability 

distribution over functions y(x) such that the 

values of y(x) evaluated at an arbitrary set of 

points x
1
, x

2
, . . . x

N
 jointly have a gaussian 

distribution.



Gaussian Processes for Regression

t n= ynn

p tn / yn= N t n/ yn ,
−1

p  t / y= N  t / y ,−1 I N 

p  y= N  y /0 ,K 

p  t  =∫ p  t / y  p  y d y= N  t /0 ,C 

C  xn , xm= k  xn , xm−1nm

● Observed target values are noisy
● Noise distribution
● Joint distribution of target values conditioned on y

● Marginal distribution
● Marginal Distribution conditioned on input values



Gaussian Processes for Regression

● Predictive distribution
● Joint distribution

● Partitioned Covariance Matrix

where k has elements                     and the scalar

● The predictive distribution is gaussian distributed with 

mean and covariance given by 

p  tN1 = N  tN1/0 ,C N1

C N1= C N k
k c 

c= k  xN1 , xN1−1

m xN1= k
TC N

−1 t
2 xN1= c−kTC N

−1 t

p t N1/ tN 

k  xn , xN1



Gaussian Processes for Regression



Gaussian Processes for Classification

● Probabilistic Approach      Model posterior 

probability      Values lie in the interval (0,1)
● Gaussian process model makes predictions that lie 

on the entire real axis
● Adapt gaussian processes to classification 

problems by transforming the output of the 

gaussian process using an appropriate non-linear 

activation function.







Gaussian Processes for Classification

● However, it is very difficult to arrive at a closed 

form analytical solution for the predictive 

distribution
● Consider approximation using sampling methods 

or analytical approximation
– Variational Inference
– Expectation Propagation
– Laplace Approximation



Gaussian Processes for Classification



Connection to Neural Networks
● For a broad class of prior distributions over w, the 

distribution of functions generated by a neural network 

will tend to a gaussian process as
● In this limit, the output variables of the neural network 

become independent.
● Generally, the weights associated with each hidden unit 

in a neural network are influenced by all of the output 

variables , but this property is lost in the gaussian 

process limit.

M ∞
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Any Questions..??

Thank You..!!


