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Kernels

Input Output sets X',V
Training set (x, y,),(x, ¥,),.....(x,, y,) € XXY
Generalization : given unseen x € X ,find y €Y

(x,y) should be “similar” to (x, y,),.....(x,, y,)

How to measure similarity..??
— Outputs - Loss Function

— Inputs - “Kernels”



Similarity of Inputs

* Symmetric Function £: XXX — R

(x,x")—> k(x,x')
e If X=R", Dot product gives a linear kernel
k(x,x")=x"x"
e For instance, in R* we can collect monomial
features extractors of degree 2 1n a nonlinear map
R >R

(x,x")—= (x>, x", xx')



Kernel Algorithm




Kernel Methods

 Fora N dimensional input, we have N_monomials

( N+d—1 ) / [For a 16x16 pixel input image and

A=
"d -’(N— 1 ) ! monomial degree d =5- N_= 10"]

* [f X is not a dot product space, then there exists a map
®: X —» H suchthat k(x,x')=¢(x) p(x')
where H 1s a linearized feature space.

* Compute dot products 1n high dimensional feature
spaces without explicitly mapping into them by means

of kernels that are nonlinear 1n input space.



Kernel Methods

* Kernel Trick — If the input vector enters any
algorithm only 1n the form of scalar products, then
replace the scalar product by some appropriate

kernel.
— Kernel PCA

— Kernel Fisher Discriminant
* Linear Parametric Model — Dual Representations
* Can also be applied to symbolic inputs such as

strings, sets, graphs, text documents etc..



Dual Representations

* Linear Regression Model — Minimize the

regularized sum of squares error function
A
z (w' ¢ (x } +— 5 W' w

e Formulate Gram Matrix K= §’
Nx N symmetric matrix K = (x ) p(x )=

* Prediction for new input x

y(x)=w' ¢p(x)=a’ ®p(x)=k(x) (K+A1,)”



Types of Kernels
e Stationary Kernels k(x,x')=k(x—x")

* Homogeneous Kernels - Radial Basis Functions
k(x,x")=k(lx=x"])

* Positive Definite Kernels - For Symmetric kernels
k(x,x')=k(x', x),the Gram Matrix K with

elements K, =k(x, ,x, ) 1s positive definite, i.e.,

T
a, Ka >0



Examples of Kernels

* Simple Polynomial Kernel — terms of degree 2
k(x,x")=(x"x)

* Generalized Polynomial kernel — degree M

)M

k(x,x")=(x"x+c)", >0

* Gaussian Kernels — not related to gaussian pdf !
k(x,x") =exp(—|x—x 12 %)
e Sigmoidal Kernels — Gram Matrix is not p.d

k(x,x')=tanh(ax" x+b)



Examples of Kernels




Construction of Kernels
* Given valid kernels £ (x,x')and k,(x,x"’), the

following are also valid kernels

ky(x,x")=ck (x,x"), >0
ky(x,x")= f(x)k,(x,x") f(x’)
ky(x,x ") =exp(k,(x,x"))
ky(x,x ") =k, (x, x ") +k,(x, x')
ky(x,x ") =k, (x, x Vo (x, x7)



Construction of Kernels

* Kernels from probabilistic generative model

— Can be used 1n discriminative setting

e Given a generative model p(x), define a kernel by
k(x,x")=p(x)p(x')
— Can be interpreted as inner product in the one
dimensional feature space defined by mapping p(x)
— Two 1puts x and x' are similar if they both have high

probabilities



Construction of Kernels

* We can further extend this class of kernels by
considering sums over products of different
probability distributions with positive weighting

coetficients
k(x,x")=2. p(xli) p(x'1i) p(i)

* For continuous latent variables, we have

k(x,x') =f p(xlz)p(x'lz)p(z)dz



Construction of Kernels

Consider parametric generative model p(x/0)

Find a kernel that measures similarity of two input vectors

induced by the generative model.

Consider the gradient w.r.t parameter 0 that defines a

vector 1n feature space having the same dimensionality as

the

Fisl

parameter vector 0.

her Score g(0,x)=A,In p(x/6)

Fisher Kernel k(x,x')=g(0,x) F 'g(0,x’')

Fisher Information Matrix F = E [ g(0,x)g(0, x)T]



Radial Basis Functions

* Basis function depends only on the radial distance
* Developed for exact function interpolation
* Linear combination of radial basis functions, one

centered on every data point.

f<x>=§wnh<ux—xn>

* Interpolation when input variables are noisy.

Noise on the mput variable x 1s described by a

variable € having a distribution v(e)



Radial Basis Functions

* Sum of squares error function 1s given by
E = %g f (y(x +e)—t [*v(e)de
* Using calculus of variations, optimize w.r.t to the
function f(x) to give ;,(y )= i t h(x—x)
n=1

* The basis functions are given by

hix) = v(ix—x,)

n N

v(ix—x,)

n=1



Radial Basis Functions

* One basis function centered on every data point

* Basis functions are normalized.

* Computationally costly to evaluate when making
predictions for new data points

* Choice of basis functions centers
— Use any randomly chosen subset of the data points

— Systematic approach — Orthogonal Least Squares

* Sequential selection process based on sum of squares error



Nadaraya - Watson Model

e We have training set {x , t }. We use a parzen density

estimator to model the joint distribution

plr.0)=1 2 f(x=x,.1-1,)

* f(x,t) 1s the component density function and there 1s
one such component centered on each data point

* Find the regression function y(x) corresponding to the
conditional average of the target variable conditioned

on the 1nput variable.



Nadaraya - Watson Model
* Regression function
y(x)=E[t/x]= f t p(t!x)dt

* Watson - Nadaraya Model

D glx—x,)t,

y(x)= "Z:g(x_xm) = > k(x—x)t, , where

n

krmx )= BT and glx)= [ flx. 0

" ngx -



Nadaraya - Watson Model

* Nadaraya — Watson Kernel Regression model using

1sotropic gaussian kernels for the sinusoidal data set




Gaussian Processes

* Dispose the parametric model 1n regression.
* Define a prior probability distribution over the

functions directly
* (Gaussian process 1s defined as the probability
distribution over functions y(x) such that the

values of y(x) evaluated at an arbitrary set of

pomts x , X, .. .X_jointly have a gaussian

distribution.



Gaussian Processes for Regression

* Observed target values are noisy ¢+ = y +e¢,

 Noise distribution p(¢./y )=N(t,/y B ")

* Joint distribution of target values conditioned on y
p(tly)=N(tly B I,)

e Marginal distribution p(y)= N(y/0, K)

* Marginal Distribution conditioned on input values

p(t)=[ p(tly)p(y)d y=N(t0,C)
C(x, ,x )=k(x, xm)—l—ﬁ_lénm



Gaussian Processes for Regression

e Predictive distribution p(zy,,/ty)
* Joint distribution p(¢,,,) = N(ty,,/0,C.,)

C., k

e Partitioned Covariance Matrix C 5, = p
C

where & has elements k(x,, x,.,) and the scalar
-1
c=k(xy,1, Xy )+B
* The predictive distribution 1s gaussian distributed with

. . T ~-—1
mean and covariance given by m(x,.,,)=k Cy t

Uz(xNH) — C_kTC;lt



Gaussian Processes for Regression




Gaussian Processes for Classification

e Proba

prol

h1

va

listic Approach — Model posterior

O1!

1ty — Values lie 1n the interval (0,1)

* Gaussian process model makes predictions that lie

on the entire real axis

* Adapt gaussian processes to classification

problems by transforming the output of the

gaussian process using an appropriate non-linear

activation function.



Gaussian Processes for Classification

* However, 1t 1s very difficult to arrive at a closed
form analytical solution for the predictive
distribution

* Consider approximation using sampling methods

or analytical approximation
— Variational Inference
- Expectation Propagation

- Laplace Approximation



Gaussian Processes for Classification




Connection to Neural Networks

* For a broad class of prior distributions over w, the
distribution of functions generated by a neural network
will tend to a gaussian process as M — oo

* In this limit, the output variables of the neural network
become independent.

* Generally, the weights associated with each hidden unit
in a neural network are influenced by all of the output
variables , but this property is lost in the gaussian

process limit.
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Any Questions..??

Thank You..!!



