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Introduction to graphical models

• This presentation concentrates on probabilistic 
graphical models, they have several benefits
– They provide a simple, clear way to visualize the 

probabilistic model, this helps e.g. designing new 
models

– Different properties of the probabilistic model, like 
conditional independence can be seen from the 
graphical model

– Complex computations in sophisticated models can be 
expressed in terms of graphical manipulations 



Introduction to graphical models

• A graph consists of nodes (vertices) that are 
connected by edges (links, arcs)

• The graph can be directed (edges have 
arrows to indicate the direction) or 
undirected (edges do not have arrows)

• In probabilistic graphical models each node 
in a graph represents a random variable and 
the edges of the graph represent 
probabilistic relationships between these 
variables



Bayesian networks

• Also known as directed graphical models

• Each node is associated with a random 
variable or with a group of variables

• Edges describe conditional relationships 
between variables
– For example, if the distribution is p(b|a) then 

the corresponding graphical model will have a 
directed edge from a to b



Bayesian networks: example
• Let the distribution be:

• Then the corresponding 

graphical model is:
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Bayesian networks: polynomial 
regression

• Lets build a graphical model for polynomial 
regression

• The polynomial regression model contains
– Vector of polynomial coefficients w
– Observed data t =
– Input data x = 
– Noise variance
– Hyperparameter
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Bayesian networks: polynomial 
regression

• Lets concentrate first on random variables, 
their distribution can be expressed as

• The corresponding graphical model (the box 
denotes that there are N values inside) is:
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Bayesian networks: polynomial 
regression

• Machine learning problems usually have a 
training set
– In graphical models these observed variables 

are denoted by shading

• Sometimes it is better to show parameters of 
a model explicitly
– In graphical models deterministic parameters 

are denoted by small, solid circles (variables are 
denoted by larger, open circles)



Bayesian networks: polynomial 
regression

• With parameters the distribution becomes:

• And the graphical model:
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Bayesian networks: polynomial 
regression

• The aim of the polynomial regression model 
is: given a new input value    find the 
corresponding probability distribution   
conditioned on the observed data

• Thus, the final form of the model is:
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Bayesian networks: polynomial 
regression

• The corresponding final graphical model is: 



Conditional independence

• If p(a|b,c) = p(a|c) then a is conditionally 
independent of b given c:            

• We can write above as: 

p(a,b|c) = p(a|b,c)p(b|c) = p(a|c)p(b|c) 
– Now the joint distribution factorises into the 

product of marginal distribution of a and b, 
both of these marginal distributions are 
conditioned on c
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Conditional independence: d-
separation

• D-separation can be used to determine 
wherever of not there exist a conditional 
independence in the underlying model

• Some concepts
– Node c is a tail-to-tail node:

– Node c is a head-to-tail node:



Conditional independence: d-
separation

– Node c is a head-to-head node:

– Node y is a descendant of node x if there is a 
path from x to y in which each step of the path 
follows the directions of the arrows



Conditional independence: d-
separation

• Let A, B and C be nonintersecting sets of nodes
• Lets consider all possible paths from any node in 

A to any node in B, the path is blocked if it 
includes a node such that either
– the arrows on the path meet either head-to-tail or tail-

to-tail at the node, and the node is in the set C, or
– the arrows meet head-to-head at the node, and neither 

the node, nor any of its descendants, is in the set C

• If all paths are blocked, then A is d-separated from 
B by C and thus condition                  is satisfiedCBA | ||  



Conditional independence: 
example

• Node f does not block
the path between a and b
because it is a tail-to-tail 
node and is not observed
• Node e does not block the path because it 

has a descendant c
• Thus, a and b are not conditionally 

independent given c



Conditional independence: 
second example

• Node f blocks the path

between a and b because

it is a tail-to-tail node that

is observed, thus there exist

a conditional independence:

• In this case, also node e blocks the path, because e
does not have descendants in the conditioned set

fba | ||  



Markov random fields

• Also known as Markov networks or 
undirected graphical models

• In Markov random fields each node 
corresponds to a variable or to a group of 
variables just like in the Bayesian networks

• However, edges between nodes are 
undirected in Markov random fields



Markov random fields: 
conditional independence

• Let A, B and C be nonintersecting sets of 
nodes

• Lets consider all possible paths from any 
node in A to any node in B, the path is 
blocked if it includes a node from C

• If all such paths are blocked, then A and B 
are conditionally independent give C: CBA | ||  



Markov random fields: 
conditional independence

• In this example

A and B are 

conditionally 

independent 

because all paths

between A and B

go through C



Inference in graphical models

• Lets look at the Bayes’ theorem’s rule: 
p(x,y)=p(x)p(y|x) , this rule can be 
represented by a graph (a) on the next slide

• If the y is observed (graph (b)), then it is 
possible to infer corresponding posterior 
distribution of x:
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Inference in graphical models

• Now the joint distribution p(x,y) can be 
expressed in terms of p(y) and p(x|y) as 
graph (c) shows: p(x,y) = p(y)p(x|y)

• This is a simple example of inference 
problem in graphical models



Inference in graphical models: 
factor graphs

• Graphical models allow a function of 
several variables to be expressed a  product 
of factors over subsets of those variables

• Factor graphs make this separation explicit 
by introducing additional nodes for factors

• Lets write the joint distribution in the form 
of a product of factors (    denotes a subset 
of variables)
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Inference in graphical models: 
factor graphs, example

• Let the distribution be

• The corresponding factor graph is
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Inference in graphical models: 
factor graphs

• Factor graphs are bipartite graphs, because 
they consist of two different kinds of nodes, 
and all edges go between nodes of opposite 
type

• Factor graphs are useful for building more 
complex models that are not covered here


