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Introduction to graphical models

e This presentation concentratespsnbabilistic
graphical models, they have several benefits

— They provide a simple, clear way to visualize the
probabilistic model, this helps e.g. designing new
models

— Different properties of the probabilistic modétel
conditional independence can be seen from the
graphical model

— Complex computations in sophisticated models ean b
expressed in terms of graphical manipulations



Introduction to graphical models

e A graph consists of nodes (vertices) that are
connected by edges (links, arcs)

 The graph can be directed (edges have
arrows to indicate the direction) or
undirected (edges do not have arrows)

 In probabilistic graphical models each node
In a graph represents a random variable and
the edges of the graph represent

probabillistic relationships between these
variables



Bayesian networks

* Also known as directed graphical models

e Each node Is associated with a random
variable or with a group of variables

e Edges describe conditional relationships
between variables
— For example, Iif the distribution pgb|a) then

the corresponding graphical model will have a
directed edge fromto b



Bayesian networks: example

e Let the distribution be:
P(X) P(X) P(X5) POX, [ X0 %50 X5) P(Xs | X, X5) P(Xs [ X4) POX; | X4, %5)

 Then the correspondil
graphical model is:




Bayesian networks: polynomial

regression

 Lets build a graphical model for polynomial
regression

 The polynomial regression model contains
— Vector of polynomial coefficients
— Observed data= (t;,....t, )"
— Input datax = (X, .., Xy
— Noise variancer”
— Hyperparametef



Bayesian networks: polynomial

regression

e Lets concentrate first on random variables,
their distribution can be expressed as

p(t, w) = p(w) |_I p(t, [ w)

* The corresponding graphical model (the box

denotes that there akevalues inside) Is:
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Bayesian networks: polynomial

regression

 Machine learning problems usually have a
training set
— In graphical models these observed variables
are denoted by shading
e Sometimes it Is better to show parameters of
a model explicitly

— In graphical models deterministic parameters
are denoted by small, solid circles (variables are
denoted by larger, open circles)



Bayesian networks: polynomial

regression
o With parameters the distribution becomes:

N
p(t,w|x,a,0°) = p(w|a)[] p(t, |w,X,,0°)

n=

* And the graphical model:

8




Bayesian networks: polynomial

regression

e The aim of the polynomial regression model
iS: given a new input value
corresponding probability distribution
conditioned on the observed data

e Thus, the final form of the model Is:

p(t,t,W| X X,a,0%) =

- )
|'l p(t, |w,x,,0°)

find the

p(w|a) p(t | X,w, o)



Bayesian networks: polynomial

regression
* The corresponding final graphical model is:
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Conditional iIndependence

 If p(alb,c) = p(alc) then a is conditionally
independent of b given & ||b|c
e \We can write above as:

p(a,blc) = p(alb,c)p(blc) = p(alc)p(b|c)

— Now the joint distribution factorises into the
product of marginal distribution of a and b,
both of these marginal distributions are
conditioned on ¢



Conditional independence: d-
separation

e D-separation can be used to determine
wherever of not there exist a conditional
iIndependence In the underlying model

e Some concepts ’
— Node c is a tail-to-tail node(/\)
a b

— Node c Is a head-to-tail node:

O—0—0O




Conditional independence: d-
separation

— Node c Is a head-to-head nodea

C

— Node y is a descendant of node x if there Is a
path from x to y in which each step of the path
follows the directions of the arrows



Conditional independence: d-
separation

 Let A, B and C be nonintersecting sets of nodes

» Lets consider all possible paths from any node In
A to any node In B, the path is blocked if it
iIncludes a node such that either

— the arrows on the path meet either head-to-tdai6r
to-tail at the node, and the node is in the satrC,

— the arrows meet head-to-head at the node, antkneit
the node, nor any of its descendants, is in th€ set

 |f all paths are blocked, then A Is d-separatedfr
B by C and thus conditioiA || B|C s satisfied



Conditional independence:
example

« Nodef does not block
the path betweeaandb
because it is a tail-to-tail
node and is not observec

 Nodee does not block the pat because it
has a descendant

 Thus,a andb arenot conditionally
iIndependent given




Conditional independence:

second example

* Nodef blocks the path 1

betweera andb because

It is a tall-to-tail node that

IS observed, thus there exist

a conditional independence:
allb|f

 |n this case, also nodadblocks the path, because
does not have descendants in the conditioned set




Markov random fields

e Also known as Markov networks or
undirected graphical models

 |n Markov random fields each node

corresponds to a variable or to a group of
variables just like in the Bayesian networks

 However, edges between nodes are
undirected in Markov random fields




Markov random fields:
conditional independence

e Let A, B and C be nonintersecting sets of
nodes

e Lets consider all possible paths from any
node in A to any node In B, the path Is
blocked if it iIncludes a node from C

o If all such paths are blocked, then A and B
are conditionally independent give &]|B|C



Markov random fields:
conditional independence

* In this example
A and B are
conditionally (
independent !
because all pathsi,‘ O
between A and B "7/,
go through C




Inference In graphical models

e Lets look at the Bayes’ theorem'’s rule:

P(X,yY)=p(X)p(y|X) , this rule can be
represented by a graph (a) on the next slide

« If the y is observed (graph (b)), then it is
possible to infer corresponding posterior

distribution of X: p(y) =>" p(y|x') p(x)

p(y | x) p(x)
p(y)

p(x|y) =



Inference In graphical models

 Now the joint distribution p(Xx,y) can be
expressed in terms of p(y) and p(x|y) as
graph (c) shows: p(x,y) = p(y)p(x|y)

e This Is a simple example of inference
problem in graphical models




Inference In graphical models:
factor graphs

* Graphical models allow a function of
several variables to be expressed a product
of factors over subsets of those variables

e Factor graphs make this separation explicit
oy Introducing additional nodes for factors

o Lets write the joint distribution in the form
of a product of factors{, denotes a subset

of variables)
p() = fo(x)




Inference In graphical models:
factor graphs, example

 Let the distribution be
P(X) = T4 (X, %) Ty (%1, Xp) 1o (%50 %5) T4 (X5)
* The corresponding factor graph is

T T2 T3




Inference In graphical models:
factor graphs

e Factor graphs are bipartite graphs, because
they consist of two different kinds of nodes,
and all edges go between nodes of opposite
type

» Factor graphs are useful for building more
complex models that are not covered here



