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Chapter 14

I shortest chapter in the book
I examples in regression and classification
I Bishop style: exponential error functions introduced with

which boosting can be expressed in a flexible way, etc.

I BiShop-Bingo
I three crosses in row, column or diagonal
I erase the counters – BS-Bingo starts...

I ...NOW!
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I ensemble of statistical classifiers are more accurate than a
single classifier

I weak learner or weak classifier: slightly better than chance
I final results by voting (classification) or averaging

(regression)
I some techniques: bagging, boosting
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Bootstrap aggregating – Bagging

I a committee technique based on bootstrapping the data
set and model averaging

I bootstrapping: given a data set of size N, create M
datasets of size N with replacement

I averaging low-bias models produce accurate predictions –
bias-variance decomposotion (Section 3.5)
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Bagging in Regression

I example on regression y(x) = h(x) + ε(x)

I from a single data set D M bootstrap data sets Dm, and
from which regressors ym(x) with errors εm(x)

I sum-of-squares error

Ex{(ym(x)− h(x))2} = Ex{ε(x)2}

I average of individual errors

EAV =
1
M

M∑
m=1

Ex{εm(x)2}
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Averaging Gives Better Permormance

I committee prediction is the average of ym

yCOM(x) =
1
M

M∑
m=1

ym(x)

I expected error from the committee

ECOM = Ex{
(
yCOM(x)− h(x)

)2} = Ex{
( 1

M

M∑
m=1

εm(x)
)2}

I under assumptions that errors εm(x) zero-mean and
uncorrelated we obtain

ECOM =
1
M

EAV
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Not As Good As in Theory

I assumptions do not hold generally
I however, it can be proved that ECOM ≤ EAV , e.g.,

Ex{(h(x)−ym(x))2} = h(x)2−2h(x)Ex{ym(x)}+Ex{ym(x)2}

I using inequality Ex{X 2} ≥ Ex{X}2 and
Ex{ym(x)} = yCOM(x) we get

(h(x)− yCOM(x))2 ≤ Ex{(h(x)− ym(x))2}
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Boosting

I training in sequence
I misclassified data point gets more weight in the following

classifier
I final prediction given by a weighted majority voting scheme
I example on two-class classification problem with most

widely used algorithm AdaBoost
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Adaptive Boosting – AdaBoost

I weights wi for each training
sample

I M weak classifiers in sequence
I indicator function I(ym(xn) 6= tn),

which equals 1 if the argument is
true, i.e., in case of
misclassification

I misclassified data points will
have more weight in the following
classifier

I weights αm for each classifier

{w(1)
n } {w(2)

n } {w(M)
n }

y1(x) y2(x) yM (x)

YM (x) = sign

(
M∑
m

αmym(x)

)
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AdaBoost: Algorithm

Algorithm

1. Initialize data weights w (1)
n = 1/N

2. For m = 1, . . . , M,
2.1 Fit a classifier ym(x) by minimizing

Jm =
∑

w (m)
n I(ym(xn 6= tn))

2.2 Evaluate quantity εm (ratio of misclassified)

εm =
P

n w (m)
n I(ym(xn) 6=tn)P

n w (m)
n

Evaluate quantity αm (weight for classfier m)
αm = log

( 1−εm
εm

)
2.3 Update the data weighting coefficients

w (m+1)
n = w (m)

n eαm I(ym(xn) 6=tn)

3. Make prediction by YM(x) = sign
(∑M

m=1 αmym(x)
)
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AdaBoost: Example

I base learners consist of a threshold on one of the input
variables

I misclassified samples by classifier at m = 1 get greater
weight for m = 2

I final classification: Ym(x) = sign(
∑

m αmym(x))
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Boosting as Sequential Minimization

I boosting was originally motivated by statistical learning
theory

I here sequential optimization of exponential error function
(“in a Bishop Style”)

I error function E =
∑N

n=1 e−tnfm(xn)

I combined classifier fm(x) = 0.5
∑

l αlyl(x)
I keeping base classifiers y1(x) . . . ym−1(x) with

corresponding αl fixed and minimizing only “the last” αm
and ym(x) leads to the same equations as in AdaBoost
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Error Functions for Boosting

I lots of boosting-like algorithms by altering of error function
I exponential error function

I sequential minimization leads to simple AdaBoost
I penalizes large negative values of ty(x)

I cross-entropy error function for t ∈ {−1, 1}: log(1 + e−yt)
I more robust to outliers
I log likelihoods for any distribution exist
I multi-class problems possible to solve
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Classification and Regression Trees – CART

I input space is splitted into cuboid regions; axis-aligned
boundaries

I only one model, e.g., constant, in one region
I human interpretation is easy

A

B

C D

E

θ1 θ4

θ2

θ3

x1

x2

x1 > θ1

x2 > θ3

x1 6 θ4

x2 6 θ2

A B C D E
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CART: Learning from Data

I determine from data
I structure of a tree
I input variable for each node
I threshold values θi for a split
I values of prediction

I combinatorially infeasible → greedy algorithm
I from a single node start growing
I stopping criterion
I pruning criterion
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Drawbacks of CART

I learning of a tree is sensitive to data
I splits aligned with axes of feature space
I hard splitting: each region of input space belongs to one

and only one node
I piecewise-constant predictions of a tree not smooth

I → hierarchical mixture of expers
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Mixture of Linear Regression Models

I simple probabilistic cases for regression and classification
I mixtures of linear regression models
I mixtures of logistic models

I Gaussians with mixing coefficients independent from input
variables

p(t |θ) =
K∑

k=1

πkN (t |wT
k φ, β−1)
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EM for Maximizing Log Likelihood

I log likelihood function given a data set of {φn, tn}

log p(t|θ) =
N∑

n=1

log
( K∑

k=1

πkN (tn|wT
k φn, β

−1)
)

I complete-data log likelihood function with binary latent
variables znk

log p(t, Z|θ) =
N∑

n=1

K∑
k=1

znk log
(
πkN (tn|wT

k φn, β
−1)

)
I EM for γnk , Q(θ, θold), πk , wk , and β
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Example

I mixture of two linear regressors
I drawback: lot of probability mass with no data
I solution: input dependent mixing coefficients
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Mixture of Experts

I mixture of linear regression models
p(t |θ) =

∑K
k=1 πkpk (t|θ)

I mixture of experts model

p(t|x, θ) =
K∑

k=1

πk (x)pk (t|x, θ)

I mixing coefficients, gating functions, as functions of input
I individual component densities, experts
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Hierarchical Mixture of Experts

I probabilistic version of decision trees
I each component in the mixture is itself a mixture distribution
I nodes: probabilistic splits of all input variables
I leaves: probabilistic models

I mixture density network (Section 5.6)

(c)

0 1

0

1

Jukka Parviainen Combining Models, 30-Apr-2007



Committees
Tree-based Models

Mixture Models

Summary

I multiple models to increase capabilities of the regressor or
classifier

I basic methods bagging and boosting improve results
compared to a single learner

I decision trees are easy to interpret
I probabilistic networks extend models
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Course Feedback

http://www.cs.hut.fi/Opinnot/Palaute/
kurssipalaute.html
→ Kevään 2007 kurssikyselyt
→ T-61.6020
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