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Chapter 14

» shortest chapter in the book
» examples in regression and classification

» Bishop style: exponential error functions introduced with
which boosting can be expressed in a flexible way, etc.

» BiShop-Bingo

» three crosses in row, column or diagonal
» erase the counters — BS-Bingo starts...
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Chapter 14

» shortest chapter in the book
» examples in regression and classification

» Bishop style: exponential error functions introduced with
which boosting can be expressed in a flexible way, etc.

» BiShop-Bingo
» three crosses in row, column or diagonal

» erase the counters — BS-Bingo starts...
» ...NOW!
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Committees Bootstrap aggregating — Bagging

Boosting

Committees

» ensemble of statistical classifiers are more accurate than a
single classifier

» weak learner or weak classifier: slightly better than chance

» final results by voting (classification) or averaging
(regression)

» some techniques: bagging, boosting
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Committees

Bootstrap aggregating — Bagging
Boosting

Bootstrap aggregating — Bagging

» a committee technique based on bootstrapping the data
set and model averaging

» bootstrapping: given a data set of size N, create M
datasets of size N with replacement

» averaging low-bias models produce accurate predictions —
bias-variance decomposotion (Section 3.5)
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Committees Bootstrap aggregating — Bagging

Boosting

Bagging in Regression

» example on regression y(X) = h(X) + ¢(x)
» from a single data set D M bootstrap data sets D,;, and
from which regressors ymn(X) with errors emn(X)

» sum-of-squares error

Ex{(¥m(X) — h(x))?} = Ex{e(x)?}

» average of individual errors

EAV = x{em

Mz

m:
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Committees Bootstrap aggregating — Bagging

Boosting

Averaging Gives Better Permormance

» committee prediction is the average of yn,

;M
yeom(X) = 1 > ym(x)
m=1

» expected error from the committee

M
Ecom = Ex{ (Yoom(x) — h(x))} = Ex{ (17 > en(¥))%}

m=1
» under assumptions that errors e, (x) zero-mean and
uncorrelated we obtain

1
Ecom = MEAV
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Committees Bootstrap aggregating — Bagging

Boosting

Not As Good As in Theory

» assumptions do not hold generally
» however, it can be proved that Eqcon < Eav, €.0.,

Ex{ (h(X)—ym(%))?} = h(%)?~2h(X)Ex{ym(X)} +Ex{ym(%)?}

» using inequality Ex{X?} > Ex{X}? and
Ex{ym(Xx)} = ycom(x) we get

(h(x) — yoom(x))? < Ex{(h(x) — ym(x))?}
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Committees Bootstrap aggregating — Bagging

Boosting

Boosting

» training in sequence

» misclassified data point gets more weight in the following
classifier

» final prediction given by a weighted majority voting scheme

» example on two-class classification problem with most
widely used algorithm AdaBoost
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Committees Bootstrap aggregating — Bagging

Boosting

Adaptive Boosting — AdaBoost

» weights w; for each training
sample

» M weak classifiers in sequence

» indicator function /(ym(Xn) # tn),

which equals 1 if the argument is / \/ ) / \
(

true, i.e., in case of neo el o

misclassification \\ /
» misclassified data points will mx):sagn(ia,ﬂymm)

have more weight in the following

classifier

» weights «, for each classifier
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Committees Bootstrap aggregating — Bagging
Boosting

AdaBoost: Algorithm

Algorithm

1. Initialize data weights w, (1) =1/N
2. Form=1,... M,
2.1 Fita classifier Ym(x) by minimizing
Im =2 Wn (Ym(xn # 1))
2.2 Evaluate quantlty em (ratio of misclassified)
Zn Wn I(Ym(xn)?étn)
>,w
Evaluate quantity an, (weight for classfier m)
= log(‘==)
2.3 Update the data weighting coefficients
’(7m+1)_ ,sm)eam/(ym(xn)¢tn)

3. Make prediction by Yu(x) = sign(>-M_, amym(x))

€m =
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Committees Bootstrap aggregating — Bagging
Boosting

AdaBoost: Example

» base learners consist of a threshold on one of the input
variables

» misclassified samples by classifier at m = 1 get greater
weight for m =2

» final classification: Ym(x) = sign(}_,, amym(X))
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Committees Bootstrap aggregating — Bagging

Boosting

Boosting as Sequential Minimization

» boosting was originally motivated by statistical learning
theory
» here sequential optimization of exponential error function
(“in a Bishop Style”)
> error function £ = Y2 | @~ tin(x»)
» combined classifier f,(X) = 0.5, ayyi(x)
» keeping base classifiers y1(X) ... ym—1(x) with
corresponding «; fixed and minimizing only “the last” an
and yn(x) leads to the same equations as in AdaBoost
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Committees Bootstrap aggregating — Bagging

Boosting

Error Functions for Boosting

» lots of boosting-like algorithms by altering of error function
» exponential error function

» sequential minimization leads to simple AdaBoost

» penalizes large negative values of ty(x)
» cross-entropy error function for t € {—1,1}: log(1 + e~%)

» more robust to outliers
» log likelihoods for any distribution exist
» multi-class problems possible to solve
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Tree-based Models

Classification and Regression Trees — CART

» input space is splitted into cuboid regions; axis-aligned
boundaries

» only one model, e.g., constant, in one region
» human interpretation is easy
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Tree-based Models

CART: Learning from Data

» determine from data

structure of a tree

input variable for each node
threshold values 6; for a split
values of prediction

» combinatorially infeasible — greedy algorithm

» from a single node start growing
» stopping criterion
» pruning criterion

v
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Tree-based Models

Drawbacks of CART

v

learning of a tree is sensitive to data
splits aligned with axes of feature space

v

v

hard splitting: each region of input space belongs to one
and only one node

» piecewise-constant predictions of a tree not smooth

v

— hierarchical mixture of expers
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Independent Mixing Coefficients

. Mixture of Experts
Mixture Models P

Mixture of Linear Regression Models

» simple probabilistic cases for regression and classification

» mixtures of linear regression models
» mixtures of logistic models

» Gaussians with mixing coefficients independent from input
variables

p(t[0) = Zwk/v tiwgs, 377)
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Independent Mixing Coefficients

. Mixture of Experts
Mixture Models P

EM for Maximizing Log Likelihood

» log likelihood function given a data set of {¢p, th}

log p(t]6) = Zlog ZTFKN tol W dn, 3~ ))

» complete-data log likelihood function with binary latent
variables z

N K

log p(t,Z16) = >~ >z log (kN (ta Wi 6, 571))

n=1 k=1

» EM for Ynk s Q(Q,GOId), Tk, Wk, and 3
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Independent Mixing Coefficients
Mixture of Experts

Mixture Models

Example

» mixture of two linear regressors
» drawback: lot of probability mass with no data
» solution: input dependent mixing coefficients
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Independent Mixing Coefficients

Mixture Models Mixture of Experts

Mixture of Experts

» mixture of linear regression models
p(t16) = Sk mPk(1]6)
» mixture of experts model

p(tx, 6) Zwk )Pk (t]x, 6)

» mixing coefficients, gating functions, as functions of input
» individual component densities, experts
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Independent Mixing Coefficients

Mixture Models Mixture of Experts

Hierarchical Mixture of Experts

» probabilistic version of decision trees
» each component in the mixture is itself a mixture distribution
» nodes: probabilistic splits of all input variables
» leaves: probabilistic models

» mixture density network (Section 5.6)
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Summary

» multiple models to increase capabilities of the regressor or
classifier

» basic methods bagging and boosting improve results
compared to a single learner

» decision trees are easy to interpret
» probabilistic networks extend models
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Course Feedback

http://www.cs.hut.fi/Opinnot/Palaute/
kurssipalaute.html

— Kevaan 2007 kurssikyselyt

— T-61.6020
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