

Machine Learning: Basic Principles

Sparse Kernel Machines

20070226 | Janne Argillander, jargilla@cc.hut.fi

.......

- Introduction
- Maximum margin classifier
- Overlapping class distributions
- Multiclass classifier
- Relevance Vector Machines
- Outroduction

- Introduction
- Maximum margin classifier
- Overlapping class distributions
- Multiclass classifier
- Relevance Vector Machines
- Outroduction

 Argorithms based on the non-linear kernels are nice, but because the kernel function k(x_n,x_m) has to be evaluated for possible pairs of the training points the computational complexity is high.

 \rightarrow Some kind of "reduction" has to be done

 We say solution to be *sparse* when only the subset of the training data points are used for evaluation.

- Introduction
- Maximum margin classifier
- Overlapping class distributions
- Multiclass classifier
- Relevance Vector Machines
- Outroduction

In the local division of the local divisiono

- Support Vector Machine (SVM) approaches the problem stated in the previous slide through the concept of the *margin*
- The margin is the smallest distance between the decision boundary and any of the training samples
- The points with the smallest margin define the decision boundary and are called as *support vectors*

T-61.6050 Special Course in Computer and Information Science

Properties of SVM

- SVM does not provide posterior probabilities. The output value can be seen as a distance from the decision boundary to the test point (measured in the feature space)
 - Considering the retrieval task (most probable first), how do we sort the results?
 - Can we combine two different methods or models?
- Can be used for classifying, regression and to data reduction
 - In the classifying task the samples are usually annotated as a positive or negative examples. SVM accepts also examples without annotations.
- SVM is fundamentally a two-class classifier
 - What if we have more classes?

Properties of SVM

- The naive solution is slow O(N³), but with the help of lagrange multipliers task is only from O(N) to O(N²)
- Handles non-línearly separable data set in the linearly separable feature space.
 - This space is defined by the nonlinear kernel function K.
 - Dimensionality of the feature space can be high
- Traditional SVM does not like outliers

- Introduction
- Maximum margin classifier
- Overlapping class distributions
- Multiclass classifier
- Relevance Vector Machines
- Outroduction

Overlapping class distributions

- Penalty that increases with the distance (*slack variables*)
- v-SVM
 - © Method that can handle data sets with few outliers
 - ☺ Parameters have to be estimated
 - Cross-validation over the hold-out set

- Introduction
- Maximum margin classifier
- Overlapping class distributions
- Multiclass classifier
- Relevance Vector Machines
- Outroduction

SVM is fundamendally a two-class classifier

Let us consider problem with K classes

- One-versus-rest approach (1-BGM)
 - Training: C_k marked as positive, rest K-1 classes as negative
 - \rightarrow Training sets will be inbalanced (if we had symmetry now it is lost)
 - (10 'faces', 100000 non faces)
 - \rightarrow What if we had similar classes?
 - \rightarrow Can lead to very very slow models, O(KN²) O(K²N²)
- One-versus-one approach
 - Training: 2-Class SVMs on all possible pair of classes

Multiclass = problems?

HINT: Generally multiclass classification is an open issue. \rightarrow Solve it and become famous!

- Introduction
- Maximum margin classifier
- Overlapping class distributions
- Multiclass classifier
- Relevance Vector Machines
- Outroduction

On the way to even more sparse solutions

- Some limitations of the SVM
 - Outputs of an SVM represent decisions
 - Slack variables are found by using a hold-out method
 - Positive definite kernels
 - SVM is just not cool anymore?
- Relevance Vector Machine (RVM) has derived from the SVM
 - Shares many (good) characteristics of the SVM
 - No restriction to positive definite kernels
 - No cross-validation needed
 - Number of relevance vectors << Number of support vectors \rightarrow faster, sparser
 - When training the RVM model we have to calculate inverse of M x M matrix (where M is amount of basis functions) → O(M³) → RVM training takes more time

v-SVM

Function approximation (RVM)

Tipping, M. E. (2000). The Relevance Vector Machine

- Introduction
- Maximum margin classifier
- Overlapping class distributions
- Multiclass classifier
- Relevance Vector Machines
- Outroduction

Software packages and good to check

Command line tool

SVM^{LIGHT} SVMTorch Multi III – one-versus-rest approach

Do it yourself

LIBSVM http://www.csie.ntu.edu.tw/~cjlin/libsvm/

http://svmlight.joachims.org/

http://www.torch.ch/

- Interfaces to LIBSVM
 - Matlab, R, Weka. Labview,...
- http://www.kernel-machines.org/
- Google