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Continuous latent variables?

latent variable: unknown variable, one for each data point
(in contrast to model parameters of which we only have
one set)

previously (Chapter 9): models with discrete latent
variables

e.g. mixture of Gaussians; the latent variable tells to which
cluster a data point belongs to

here: models where some, or all, latent variables are
continuous

a continuous latent variable may e.g. represent a location
on a subspace or a manifold
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PCA - Principal Component Analysis

the PCA finds a linear subspace that passes close to the
data

orthogonal projection of the data onto a lower-dimensional
linear space

widely used for e.g. dimensionality reduction, feature
extraction and data visualization

dates back to long before probabilistic latent variables
models, and has later been re-interpreted as one
two equivalent formulations:

1 maximum variance formulation
2 minimum-error formulation
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Maximum variance formulation

idea: try to keep as much of the variation in the data as
possible

maximize the variance of the projected data points uT
1 xn

variance expressed as uT
1 Su1, where S is the covariance

matrix of the data

maximize with restriction uT
1 u1 = 1 using Lagrange

multipliers
⇒ Su1 = λ1u1 (an eigenvalue problem)

other components than first restricted to be orthogonal to
all previous components

solving the eigenvalue problem gives all projection
dimensions u at once as eigenvectors of S; the first is the
one that corresponds to the largest eigenvalue λ, etc.
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Minimum error formulation

idea: if we replace observations with their projections, the
projections should be as close as possible to the
observations

in any orthonormal basis with basis vectors ui , we can
express the data as xn =

∑D
i=1 αniui

here we approximate the data by a lower-dimensional
representation x̃n by keeping only the first M of the
coefficients αni for each data point

find the basis that minimizes the squared error in making
the approximation: J = 1

N

∑N
n=1 ‖xn − x̃n‖

2

...a long derivation in the book, again leads to: Sui = λiui

⇒ the formulations lead to the same method
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Illustration of the two formulations

Maximum variance:
maximize spread of
green dots on the
line

Minimum error:
minimize average
squared length of
blue lines

x2

x1

xn

x̃n

u1

Mikaela Klami



Principal Component Analysis
Nonlinear or non-Gaussian latent variable models

Traditional PCA
Probabilistic PCA
Kernel PCA

Applications

dimensionality reduction: in many
applications, a large number of
dimensions can be dropped without
introducing noticeable projection error
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preprocessing (“whitening” of data): we want to have
comparable scales and no correlation between
measurements; PCA can be used for this as
yn = Λ

−1/2UT (xn − x̄)

visualization: plot data points into two-dimensional plane
as uT

1 xn and uT
2 xn
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Why probabilistic PCA?

allows dealing with missing values in data

allows fitting local PCAs into data with several clusters,
using a mixture formulation

leads to EM algorithm which is actually faster to compute
under certain circumstances

basis for Bayesian treatment of PCA

can be used to model class-conditional densities and
hence can be applied to classification problems: new
samples are assigned to the class whose PCA they fit
better

etc.
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Generative process
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ẑ

x2

x1

µ

p(x|ẑ)
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ẑ|w|

w

x2

x1

µ

p(x)

z ∼ N(0, I)

x = Wz + µ + ǫ

W specifies a set of directions, µ is the mean of the data,
and the latent variable vector z tells how much we should
move from the mean along each direction

x generated by adding spherical noise ǫ to that location
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Maximum likelihood formulation

the model parameters can be solved by maximizing the
likelihood of the model given the data:
log p(X|W,µ, σ2) = −N

2 [D log(2π) + log |C| + Tr(C−1S)],
where C = WWT + σ2I

the solution can be found analytically as
W = U(Λ − σ2I)1/2R

that is, W is the PCA projections U scaled according to the
variances of the dimensions, multiplied by an arbitrary
rotation matrix R

⇒ probabilistic PCA finds only the same subspace as
traditional PCA, but not necessarily the actual projection
dimensions

Mikaela Klami



Principal Component Analysis
Nonlinear or non-Gaussian latent variable models

Traditional PCA
Probabilistic PCA
Kernel PCA

EM algorithm for PCA

in practice, we can maximize the likelihood using an EM
algorithm

E-step: estimate the expected values for the latent
variables z

M-step: find model parameters that maximize the
likelihood given the values of z

computational advantage: does not require
eigendecomposition of the covariance matrix, which is
slow in high-dimensional spaces
⇒ may be faster to compute a small-dimensional
projection using the EM instead of traditional methods

enables extensions and handling missing data
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Bayesian PCA

Bayesian PCA obtained by
specifying so-called Automatic
Relevance Determination (ARD)
prior for W:

wi ∼ N(0, α−1
i I)

when αi is large, values of wi

are forced to be close to zero

⇒ Bayesian PCA is able to
discover how many projection
dimensions are needed

can be solved with either
variational approximation or
sampling
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Kernel PCA

a non-linear version of PCA can be obtained by making a
non-linear transformation of the data, and applying
standard PCA for the transformed values

normal PCA: Sui = λiui , where S = 1
N

∑N
n=1 xnxT

n

nonlinear transformation φ(x) leads to Cvi = λivi , where
C = 1

N

∑N
n=1 φ(xn)φ(xn)T

kernel trick: instead of solving the above equation
explicitly, we can use the kernel trick (Chapter 6)

express v as a linear combination of the φ(xn):
vi =

∑N
n=1 ainφ(xn)

this gives: Kai = λiNai , where K is the kernel matrix with
elemens k(xn, xm) = φ(xn)

T φ(xm)
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Other models with continuous latent variables

PCA is a linear method that assumes normal distributions
(for both z and ǫ)

here, we consider models that have continuous latent
variables, but do not make either the linearity or the
Gaussianity assumption (or both)

relaxing either assumption makes computation often
considerably more complex

purpose: to show how familiar methods can be interpreted
as latent variable models
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ICA - Independent Component Analysis

latent variables represent unknown signals

in ICA, the latent variables are independent:
p(z) =

∏M
j=1 p(zj)

observed data as a linear mixture of latent variables:
x = Az

both A and z are unknown (blind source separation task)

z can be detected if z have non-Gaussian distributions
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Autoassociative Neural Networks

multilayer perceptron trained to
replicate inputs

because the hidden layer is smaller,
there is necessarily error in the
replication

x1

xD

z1

zM

x1

xD

inputs outputs

minimization of that error gives autoassociative
mapping, and the latent variables (hidden layer
nodes) can be used e.g. as compressed versions of
inputs

equivalent to PCA if network is linear

with nonlinear units and multiple layers, provides a
nonlinear dimensionality reduction method
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Nonlinear manifolds

instead of a linear subspace, we may want to look for a
nonlinear manifold, i.e. a curved subspace

a mixture of linear models can approximate a non-linear
surface: e.g. mixture of probabilistic PCAs

a single nonlinear model for the surface: e.g. principal
curves

other methods: Multidimensional Scaling (MDS), Locally
Linear Embedding (LLE), Isometric Feature Mapping
(isomap)
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Nonlinear manifolds - continued

Generative Topographic Mapping (GTM): two-dimensional
latent grid, allows using summation instead of integration in
marginalization

note: does not actually have continuous latent variables!

aims to preserve the topology of the data space

similar to Self-Organizing Maps (SOM), but has a
probabilistic formulation (BMU index corresponds to the
latent variable)
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Conclusion

a continuous latent variable describes a location in a
subspace or manifold (instead of a cluster index like with
the discrete latent variables)

PCA was viewed from three different angles: maximizes
variance; minimizes reconstruction error; or probabilistic
formulation

kernel PCA provides a nonlinear extension via the kernel
trick

some other continuous latent variable models: ICA,
autoassociative neural networks, and methods for
modeling nonlinear manifolds
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Questions?
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