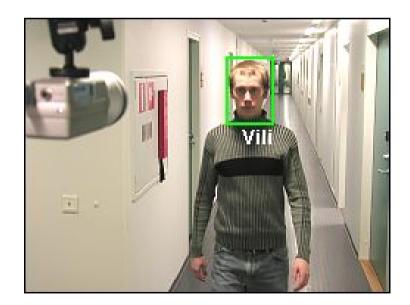
Kaius Perttilä

Active Gesture Recognition using POMDP

T-61.6020


Reinforcement Learning—Theory and Applications

Outline

An example of a POMDP application

- problem statement
- application
- results

 paper by Trevor Darrell and Alex Pentland, MIT Media Lab

Gesture recognition problems

• dynamic environment

- closed laboratory room vs. walking street

- available picture quality
 - optics, resolution, lighting, angles, amount of cameras
- processing power

- real-time(ish) applications & high resolution

Solution in practice

- low-resolution general view
 - gives a world picture used to control the active cameras
 - used to identify the user's body parts
- movable foveated views
 - able to track a limited area
 - would consist of several cameras in practice
 - actively focused at relevant body parts, e.g. face

Application assumptions

- active cameras focused on user's hands and face
 - unsufficient number of active cameras to track all body parts
 - which body part to track unknown a priori
- method requirements:
 - perceptual selection that learns from experience
 - apapts to only partial observations of world

Application assumptions

 routines to track body movements using a low-resolution carmera exist

- static low-resolution camera inadequate to model the world
 - body parts contain hidden states
 - otherwise there would be no problem

Active Gesture Recognition

Model consists of:

- variables describing the state of the world
- 2. portions of the world are only revealed by a moving fovea
- 3. the fovea can be actively controlled
- 4. an accept command

AGR

- Modelled as an POMDP
 - states
 - obseravtions
 - actions
 - reward function
- Practical limitations limit the explicit solving of the transitions
 - hidden state learning (Q-learning)

AGR states 1/2

- Person tracker:
 - person-present { true, false }
 - *left-arm-extended* { true, false }
 - right-arm-extended { true, false }
- Foveated gesture recognition:
 - face { neutral, smile, suprise }
 - left-hand { neutral, point, open }
 - right-hand { neutral, point, open }

AGR states 2/2

- Internal state of vision system:
 - head-foveated { true, false }
 - left-hand-foveated { true, false }
 - right-hand-foveated { true, false }

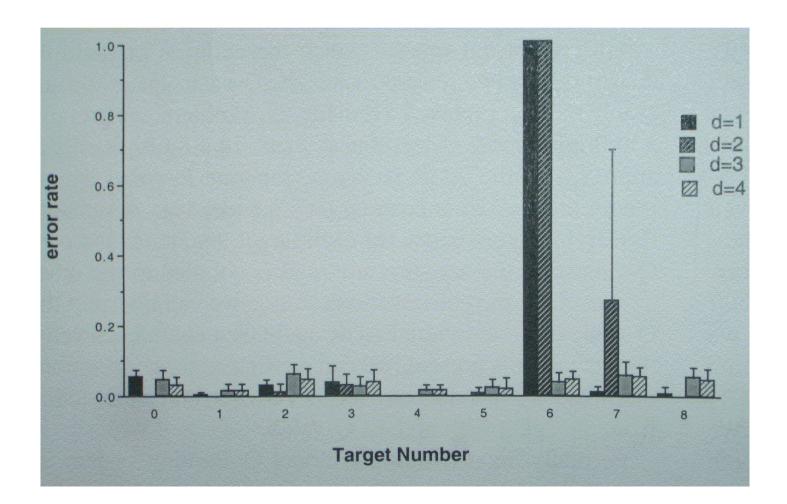
AGR actions

- Four foveation commands:
 - look-body
 - look-head
 - look-left-hand
 - look-right-hand
- Special command:
 - accept

AGR algorithm

- Modified Q-leaning
 - store (a[t], r[t], o[t]) tuples
 - store an individual q[t]-value for each tuple
 - for each time instance
 - rate each tuple, and select K most similar instances of them
 - calculate Q-value (mean [K most similar])
 - select action with highest Q-value (or random)
 - update the q-values for each tuple in the history

Multiple objects 1/2


- presented system handles focusing action descision when there is one target
- several targets (=accept states) leads to a complex value space and slow convergance

Multiple objects 2/2

- Solution:
 - each target has its own learning agent, own history and Q-values
 - observations shared between agents
 - select action based on the highest Q-value among the agents

Results 1/2

AGR was connected to person tracking and gesture analysis systems

Results 2/2

- complex patterns require extensive learning
- Limitations:
 - environment unknown
 - one active camera used
 - real applications need several point of views
 - person tracking and gesture analysis systems not presented

Questions?