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Structure

MDP’s

POMDP’s

Value Iteration for POMDP’s
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Markov Decision Process

MDP is described by a tuple 〈S,A, T,R〉, where

S is a finite set of states of the world

A is a finite set of actions

T : S × A → Π(S) is the state transition function.

R : S × A → R is the reward function.
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Markov Decision Process (2)

World

Agent

ActionsStates

Uncertainty about the effects of an agent’s actions

Currect state is always known.

The next state and the expected reward depend only
on the previous state and the action taken.
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Solving MDP: Value iteration

V1(s) = 0; ∀s

t = 1

loop

t = t + 1

loop ∀s ∈ S
loop ∀a ∈ A

Qa
t (s) = R(s, a) + γ

∑
s′∈S T (s, a, s′)Vt−1(s

′)
end loop

Vt(s) = maxa Qa
t (s)

end loop

until |Vt(s) − Vt−1(s)| < ǫ ∀s ∈ S
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Partially Observable MDP

Uncertainty about the currect state.

+ Observations on the state of the world.

Probability distribution b over possible states.
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POMDP

POMDP is described by a tuple 〈S,A, T,R,Ω, O〉, where

S,A, T,R describe a Markov decision process.

Ω is a finite set of observations

O : S × A → Π(Ω) is the observation function.
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POMDP

SE

World
ActionObservation

Agent

π
b

SE: State estimator

π: Policy

b: Internal belief state. A sufficient statistic of the past
history and initial belief state.
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SE: State estimator

Degree of belief in some state s′, b′(s′), can be obtained
by

b′(s′) = P (s′|o, a, b) =
P (o|s′, a)

∑
s P (s′|a, b, s)P (s|a, b)

P (o|a, b)

=
O(s′, a, o)

∑
s T (s, a, s′)b(s)

P (o|a, b)

Can be constructed simply from a given model.
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Finding optimal policy

Optimal policy is the solution to a continuous space belief
MDP, defined by

B, the set of belief states

A, the set of actions

τ(b, a, b′), the state-transition function, defined as
τ(b, a, b′) = P (b′|a, b) =

∑
o P (b′|a, b, o)P (o|a, b),

where P (b′|a, b, o) = 1 if SE(b, a, o) = b′,
(and P (b′|a, b, o) = 0 otherwise).
ρ(b, a) is the reward function on belief states,

ρ(b, a) =
∑

s

b(s)R(s, a)
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Policy trees

Policy: which action to choose, given the state?
Can be represented as a tree:

A

A A A

A

A A A

O1

O1

O
O

O
O

2
k

2
k

t steps to go

t−1 steps to go

2 steps to go

1 step to go

A 1-step policy tree p: Vp(s) = R(s, a(p))
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. . . policy trees

A t-step policy tree p:

Vp(s) = R(s, a(p))+γ
∑

s′

T (s, a(p), s′)
∑

oi

O(s′, a(p), oi)Voi(p)(s
′),

where oi(p) is the t − 1-step policy subtree associated
with observation oi at the top level of a t-step policy tree
p.
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POMDP: Uncertainty about states

The exact state of the world is not known, only the
distribution b over possible states.

The expected value for policy tree p is thus

Vp(b) =
∑

s

b(s)Vp(s) ,

or Vp(b) = b · αp.

The optimal t-step value of starting in belief state b is the
value of executing the best policy tree in that belief state:

Vp(b) = max
p∈P

b · αp .

But there are many possible policies p!!
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Insights from geometry

Consider a world with only 2 states, s1, s2, and different
policies p1, p2, p3

b(s )1

Vp3

Vp2

Vp1

0 1

Optimal t-step value forms a piecewise-linear convex
surface.

Can define regions (in b) where there is one single policy

tree p such that b · αp is maximal over the entire region.
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Insights from geometry (2)

Some policy trees are totally dominated:

b(s )1

Vpb

Vpa

Vpc

Vpd

0 1

Here Vpc
, Vpd

are dominated and thus not useful. They

can be ignored.
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POMDP: value iteration

Problem: given a (parsimonious) set of useful policy
trees Vt−1, how to construct a parsimonious
representation of Vt?

Exhaustive enumeration:

1. Construct all possible trees Vt from the given Vt−1.

2. Prune out the trees which are not useful.

Exponential in |Ω| !!
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Witness

We must avoid exhaustively generating all Vt.

Consider an auxiliary function

Qa
t (b) =

∑

s

b(s)R(s, a) + γ
∑

o

P (o|a, b)Vt−1(b
′
o) .

We now have Vt(b) = maxa Qa
t (b).

Q-functions are piecewise-linear and convex.
We can define a unique minimal useful set of policy trees
for each Q function (finding these is our new problem).

Witness algorithm is used to find the set. It has polynomial

complexity.

T-61.6020 – p.17/19



POMDP: value iteration 2

V1 = [0 . . . 0]

t = 1

loop

t = t + 1

foreach a ∈ A
Qa

t =witness(Vt−1, a)

Prune ∪aQ
a
t to get Vt

until supb |Vt(b) − Vt−1(b)| < ǫ
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Witness inner loop

Step 1: Include one tree which is optimal for some belief
state b to Ua, the set of minimal useful trees.

Define a new tree pnew: If p is a t-step policy tree, oi an
observation, and p′ a (t − 1) step policy tree, pnew is a
tree that agrees with p except for observation oi, where
oi(pnew) = p′.

Witness theorem: if for some b, we can generate a tree
pnew such that Vpnew

(b) > Vp̃(b) for all p̃ ∈ Ua, the Ua is not
yet a perfect representation of Qa

t (b). Add pnew to Ua.

Replace subtrees of p̃ by p′ ∈ Vt−1 until no witness points

are found.
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