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Structure

®» MDP’s
» POMDP’s
® Value lteration for POMDP’s
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M ar kov Decision Process

MDP is described by a tuple (S, A, T, R), where
S 1s a finite set of states of the world
A Is a finite set of actions
T : S xA—1II(S) Is the state transition function.
R : 8§ x A— Ris the reward function.
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Markov Decision Process (2)

T

Agent

States Actions

#® Uncertainty about the effects of an agent’s actions

# Currect state is always known.

#® The next state and the expected reward depend only
on the previous state and the action taken.

T-61.6020 — p.4/19



Solving MDP: Value iteration

Vi(s) = 0; Vs

t=1

loop
t=1t+1

loop Vs € S
loop Va € A

Q7 (s) = R(s,a) + 72 ges (s, 0,8)Viea(s')

end loop

Vi(s) = max, Qf (s)

end loop

until |Vi(s) — Vici(s)| <eVs e S




Partially Observable MDP

#® Uncertainty about the currect state.
+ Observations on the state of the world.

Probabillity distribution b over possible states.
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POMDP

POMDRP is described by a tuple (S, A, T, R,2,0), where
S, A, T, R describe a Markov decision process.
(2 Is a finite set of observations
O: SxA—TII(Q) Is the observation function.
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Observatioy Action

*sE bET

® SE: State estimator
# 7. Policy

# b Internal belief state. A sufficient statistic of the past
history and initial belief state.
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SE: State estimator

Degree of belief in some state ', ¢/(s’), can be obtained
by

ols’,a) >, P(s'|a,b,s)P(s|a,b)
P(ola,b)

V' (s") = P(s'|o,a,b) = il

_ O(s',a,0)> .. T(s,a,s)b(s)
P(ola,b)

Can be constructed simply from a given model.
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Finding optimal policy

Optimal policy is the solution to a continuous space belief
MDP, defined by

B, the set of belief states
A, the set of actions

T(b,a,b’), the state-transition function, defined as
7(b,a,b") = P(b'|a,b) = >, P(|a,b,0)P(o|a,b),

where P(V'|a,b,0) = 1if SE(b,a,0) =1V,
(and P(V'|a, b, 0) = 0 otherwise).
p(b,a) Is the reward function on belief states,

p(b,a) = > b(s)R(s,a)
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Policy trees

Policy: which action to choose, given the state?
Can be represented as a tree:

t steps to go

A
O, Az Oy
@ X t—1 steps to ¢

2 steps to go

(A) O,
@/6@ % 1 step 0.0

A 1-step policy tree p: V,(s) = R(s, a(p))
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... policy trees

A t-step policy tree p:

Vp(s) = R(s,a(p))+7 Y T(s,a(p),s) Y O(s,a(p),0:)Vo,)(s).

where o;(p) Is the t — 1-step policy subtree associated
with observation o; at the top level of a t-step policy tree

D.

@ t steps to go
o0 4 o
@ ce e t—1 steps to ¢
[ ]

2 steps to go

@ O,
@/6@ \@ 1 stepto o
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POMDP: Uncertainty about states

The exact state of the world is not known, only the
distribution b over possible states.

The expected value for policy tree p Is thus
Vp(b) = > b(s)Vp(s) ,

or V,(b) =b- ay.
The optimal ¢-step value of starting in belief state b is the
value of executing the best policy tree in that belief state:

Vo (b) = b - :
p() I;1€a73< Qp

But there are many possible policies p!!
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| nsights from geometry

Consider a world with only 2 states, s, s9, and different
policies p1, p2, p3

Vp

1
Vp

(5 | b(s) i
Optimal ¢-step value forms a piecewise-linear convex
surface.

Can define regions (in b) where there is one single policy

tree p such that b - o, Is maximal over the entire region.

T-61.6020 — p.14/19



| nsights from geometry (2)

Some policy trees are totally dominated:

\
P
a Vp

(5 b(s) 1

Here V), , V,, are dominated and thus not useful. They

can be ignored.
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POMDP: valueiteration

Problem: given a (parsimonious) set of useful policy
trees V;_1, how to construct a parsimonious
representation of V;?

Exhaustive enumeration:

1. Construct all possible trees V; from the given V;_;.
2. Prune out the trees which are not useful.

Exponential in || !!
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Withess

We must avoid exhaustively generating all V;.

Consider an auxiliary function
Qi (b) = Y _b(s)R(s,a) +~ Y _ Plola,b)Vi1(b],) -

We now have V;(b) = max, QF(b).

(-functions are piecewise-linear and convex.

We can define a unigue minimal useful set of policy trees
for each () function (finding these is our new problem).

Witness algorithm is used to find the set. It has polynomial

complexity.
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POMDP: valueiteration 2

Vi =10...0]

t=1

loop
t=1t+1

foreach a € A
Q¢ =witness(V;_1, a)
Prune U,Q¢ to get V,

until supy, [V¢(b) — Vi—1(b)[ < e
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Witnhessinner loop

Step 1: Include one tree which is optimal for some belief
state b to U,, the set of minimal useful trees.

Define a new tree p,..,: If p IS a t-step policy tree, o; an
observation, and p" a (t — 1) step policy tree, p,e IS @

tree that agrees with p except for observation o;, where
/

Oi(pnew) — P

Witness theorem: if for some b, we can generate a tree
Pnew SUCh that V), _ (D) > V5(D) for all p € U,, the U, Is not

yet a perfect representation of Q¢ (b). Add ppey t0 U,,.

Replace subtrees of p by p’ € V;_1 until no witness points

are found.
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